簡易檢索 / 詳目顯示

研究生: 王崇岳
Wang, Chung-Yueh
論文名稱: 微生物揮發性化合物透過轉錄重塑調控花椰菜的銅耐受性與植物生長
Microbial Volatile Compounds Regulate Copper Tolerance and Plant Growth in Brassica oleracea var. botrytis by Transcriptional Reprograming
指導教授: 黃浩仁
Huang, Hao-Jen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 81
中文關鍵詞: 內生菌揮發性化合物合成微生物群落銅逆境植物-微生物交互作用
外文關鍵詞: Endophyte, Volatile compounds, SynComs, Copper stress, Plant–microbe interaction
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract ii 英文延伸摘要 iii 致謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 縮寫對照表 xiii 壹. 前言 1 貳. 材料與方法 4 2.1. 植物材料和培養條件 4 2.2. 內生菌培養 4 2.3. 內生菌的銅耐受性測定 5 2.4. 植物內生菌株的VCs與植物氣味共培養 5 2.5. 植株生長相的測量 5 2.6. 銅逆境處理 5 2.7. 根部細胞死亡染色 6 2.8. 氣相層析質譜法(Gas chromatography–mass spectrometry , GC-MS) 6 2.9. 電感耦合電漿體質譜法(Inductively coupled plasma mass spectrometry, ICP-MS) 7 2.10. RNA萃取 (RNA extraction) 7 2.11. RNA濃度定量(Quantitative Analysis of RNA) 8 參. 結果 12 3.1 內生菌揮發性化合物對花椰菜生長的影響 12 3.2 內生菌揮發性化合物對植物耐銅逆境的影響 12 3.3 內生菌株在銅逆境下的影響 12 3.4 混合菌液對植物生長及耐銅性的影響 13 3.5 內生菌揮發性化合物對植株體內銅離子濃度的影響 13 3.6 內生菌揮發性化合物對花椰菜基因表現調控 14 3.7 內生菌揮發性化合物誘導花椰菜防禦基因表現 14 3.8 內生菌揮發性化合物誘導花椰菜生長相關基因表現 16 3.9 內生菌揮發性化合物成分分析(GC-MS) 16 肆. 討論 18 4.1 內生菌揮發性化合物影響花椰菜的生長 18 4.2 內生菌揮發性化合物誘導花椰菜防禦及逆境抗性 18 4.3 混合菌液揮發性化合物誘導花椰菜生長、防禦及逆境抗性 19 4.4 轉錄體分析花椰菜受內生菌揮發性化合物調控的銅逆境反應基因表現 20 伍. 結論 23 參考文獻 24 結果圖表 35 附錄 50

    Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., ... & Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22, 8148-8162
    Ameen, M., Mahmood, A., Sahkoor, A., Zia, M. A., & Ullah, M. S. (2024). The role of endophytes to combat abiotic stress in plants. Plant Stress, 100435.
    Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., Puig, S., & Peñarrubia, L. (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant journal : for cell and molecular biology, 45(2), 225–236.
    Bric, John M., Richard M. Bostock, and Sara E. Silverstone. "Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane." Applied and environmental Microbiology 57.2 (1991): 535-538.
    Burz, S. D., Causevic, S., Dal Co, A., Dmitrijeva, M., Engel, P., Garrido-Sanz, D., ... & Vorholt, J. A. (2023). From microbiome composition to functional engineering, one step at a time. Microbiology and molecular biology reviews, 87(4), e00063-23.
    Cantabella, D., Dolcet-Sanjuan, R., Solsona, C., Vilanova, L., Torres, R., & Teixidó, N. (2021). Optimization of a food industry-waste-based medium for the production of the plant growth promoting microorganism Pseudomonas oryzihabitans PGP01 based on agro-food industries by-products. Biotechnology Reports, 32, e00675.
    Chaudhary, P., Agri, U., Chaudhary, A., Kumar, A., & Kumar, G. (2022). Endophytes and their potential in biotic stress management and crop production. Frontiers in microbiology, 13, 933017.
    Chen, G., Li, J., Han, H., Du, R., & Wang, X. (2022). Physiological and molecular mechanisms of plant responses to copper stress. International journal of molecular sciences, 23(21), 12950.
    Chiang, C. Y., Chang, C. H., Tseng, T. Y., Nguyen, V. A. T., Su, P. Y., Truong, T. T. T., ... & Huang, H. J. (2024). Volatile Compounds Emitted by Plant Growth–Promoting Fungus Tolypocladium inflatum GT22 Alleviate Copper and Pathogen Stress. Plant and Cell Physiology, 65(2), 199-215.
    Chiou, W. Y., & Hsu, F. C. (2019). Copper toxicity and prediction models of copper content in leafy vegetables. Sustainability, 11(22), 6215.
    Chot, E., & Reddy, M. S. (2022). Role of ectomycorrhizal symbiosis behind the host plants ameliorated tolerance against heavy metal stress. Frontiers in Microbiology, 13, 855473.
    Cordovez, V., Schop, S., Hordijk, K., Dupré de Boulois, H., Coppens, F., Hanssen, I., Raaijmakers, J. M., & Carrión, V. J. (2018). Priming of Plant Growth Promotion by Volatiles of Root-Associated Microbacterium spp. Applied and environmental microbiology, 84(22), e01865-18.
    Durand, A., Leglize, P., & Benizri, E. (2021). Are endophytes essential partners for plants and what are the prospects for metal phytoremediation?. Plant and Soil, 460, 1-30.
    Ehmann, Axel. "The Van Urk-Salkowski reagent—a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives." Journal of Chromatography A 132.2 (1977): 267-276.
    Eid, A. M., Fouda, A., Abdel-Rahman, M. A., Salem, S. S., Elsaied, A., Oelmüller, R., ... & Hassan, S. E. D. (2021). Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: an overview. Plants, 10(5), 935.
    El-Sappah, A. H., Zhu, Y., Huang, Q., Chen, B., Soaud, S. A., Abd Elhamid, M. A., ... & El-Tarabily, K. A. (2024). Plants’ molecular behavior to heavy metals: from criticality to toxicity. Frontiers in plant science, 15, 1423625.
    Emmenegger, B., Massoni, J., Pestalozzi, C. M., Bortfeld-Miller, M., Maier, B. A., & Vorholt, J. A. (2023). Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning. Nature Communications, 14(1), 7983.
    Etminani, F., Harighi, B., & Mozafari, A. A. (2022). Effect of volatile compounds produced by endophytic bacteria on virulence traits of grapevine crown gall pathogen, Agrobacterium tumefaciens. Scientific Reports, 12(1), 10510.
    Fadiji, A. E., & Babalola, O. O. (2020). Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Frontiers in Bioengineering and Biotechnology, 8, 467.
    Fuloria, A., Saraswat, S., & Rai, J. P. N. (2009). Effect of Pseudomonas fluorescens on metal phytoextraction from contaminated soil by Brassica juncea. Chemistry and Ecology, 25(6), 385-396.
    Gardner, S. P., & Olson, J. W. (2018). Interaction of copper toxicity and oxidative stress in Campylobacter jejuni. Journal of bacteriology, 200(21), 10-1128.
    Gilliham, M., & Hrmova, M. (2022). Alluminating structure key to stress tolerance. Cell Research, 32(1), 5-6.
    Gong, Q., Li, Z. H., Wang, L., Zhou, J. Y., Kang, Q., & Niu, D. D. (2021). Gibberellic acid application on biomass, oxidative stress response, and photosynthesis in spinach (Spinacia oleracea L.) seedlings under copper stress. Environmental Science and Pollution Research, 28(38), 53594-53604.
    Grahovac, J., Pajčin, I., & Vlajkov, V. (2023). Bacillus VOCs in the context of biological control. Antibiotics, 12(3), 581.
    Gupta, S., Pandey, S., & Sharma, S. (2022). Decoding the plant growth promotion and antagonistic potential of bacterial endophytes from Ocimum sanctum Linn. against root rot pathogen Fusarium oxysporum in Pisum sativum. Frontiers in Plant Science, 13, 813686.
    Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in microbiology, 16(10), 463-471.
    He, Y., Guo, W., Peng, J., Guo, J., Ma, J., Wang, X., ... & Wang, Z. (2022). Volatile organic compounds of streptomyces sp. TOR3209 stimulated tobacco growth by up-regulating the expression of genes related to plant growth and development. Frontiers in Microbiology, 13, 891245.
    Hossain, M. S., Abdelrahman, M., Tran, C. D., Nguyen, K. H., Chu, H. D., Watanabe, Y., ... & Tran, L. S. P. (2020). Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress. Environmental pollution, 258, 113544.
    Huang, S., & Ma, J. F. (2022). Role of calcium signaling in aluminum tolerance in Arabidopsis. New Phytologist, 233(6).
    Jain, A., Wilson, G. T., & Connolly, E. L. (2014). The diverse roles of FRO family metalloreductases in iron and copper homeostasis. Frontiers in Plant Science, 5, 100.
    Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of toxicology, 97(10), 2499-2574.
    Kobayashi, Y., Kobayashi, Y., Sugimoto, M., Lakshmanan, V., Iuchi, S., Kobayashi, M., Bais, H. P., & Koyama, H. (2013). Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers. Plant physiology, 162(2), 732–740.
    Kobayashi, Y., Kuroda, K., Kimura, K., Southron-Francis, J. L., Furuzawa, A., Kimura, K., Iuchi, S., Kobayashi, M., Taylor, G. J., & Koyama, H. (2008). Amino acid polymorphisms in strictly conserved domains of a P-type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. Plant physiology, 148(2), 969–980.
    Kwon, Y. Y., Lee, H. J., Lee, M. J., Lee, Y. S., & Lee, C. K. (2024). The ICL1 and MLS1 Genes, Integral to the Glyoxylate Cycle, are Essential and Specific for Caloric Restriction-Mediated Extension of Lifespan in Budding Yeast. Advanced biology, 8(9), e2400083.
    Latorre, M., Troncoso, R., & Uauy, R. (2019). Biological aspects of copper. In Clinical and translational perspectives on WILSON DISEASE (pp. 25-31). Academic Press.
    Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., ... & Donoso, R. (2016). Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Frontiers in Microbiology, 7, 1838.
    Li, P. S., Kong, W. L., Wu, X. Q., & Zhang, Y. (2021). Volatile organic compounds of the plant growth-promoting rhizobacteria JZ-GX1 enhanced the tolerance of Robinia pseudoacacia to salt stress. Frontiers in Plant Science, 12, 753332.
    Ling, L., Luo, H., Yang, C., Wang, Y., Cheng, W., Pang, M., & Jiang, K. (2022). Volatile organic compounds produced by Bacillus velezensis L1 as a potential biocontrol agent against postharvest diseases of wolfberry. Frontiers in Microbiology, 13, 987844.
    Liu, Y., Morelli, M., Koskimäki, J. J., Qin, S., Zhu, Y. H., & Zhang, X. X. (2022). Role of endophytic bacteria in improving plant stress resistance. Frontiers in Plant Science, 13, 1106701.
    Luo, H., Riu, M., Ryu, C. M., & Yu, J. M. (2022). Volatile organic compounds emitted by Burkholderia pyrrocinia CNUC9 trigger induced systemic salt tolerance in Arabidopsis thaliana. Frontiers in Microbiology, 13, 1050901.
    Luo, T., Sheng, Z., Chen, M., Qin, M., Tu, Y., Khan, M. N., ... & Zhou, G. (2024). Phytoremediation of copper-contaminated soils by rapeseed (Brassica napus L.) and underlying molecular mechanisms for copper absorption and sequestration. Ecotoxicology and Environmental Safety, 273, 116123.
    Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in plant science, 11, 591911.
    Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of environmental management, 174, 14-25.
    Marín, O., González, B., & Poupin, M. J. (2021). From microbial dynamics to functionality in the rhizosphere: a systematic review of the opportunities with synthetic microbial communities. Frontiers in plant science, 12, 650609.
    Marques, D. M., Da Silva, A. B., Mantovani, J. R., Magalhães, P. C., & De Souza, T. C. (2019). Root morphology and leaf gas exchange in Peltophorum dubium (Spreng.) Taub.(Caesalpinioideae) exposed to copper-induced toxicity. South African Journal of Botany, 121, 186-192.
    Mehes-Smith, M., Nkongolo, K., & Cholewa, E. (2013). Coping mechanisms of plants to metal contaminated soil. In Environmental change and sustainability. IntechOpen.
    Meldau, D. G., Meldau, S., Hoang, L. H., Underberg, S., Wünsche, H., & Baldwin, I. T. (2013). Dimethyl disulfide produced by the naturally associated bacterium bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. The Plant cell, 25(7), 2731–2747.
    Mishra, S. K., Khan, M. H., Misra, S., Dixit, V. K., Gupta, S., Tiwari, S., ... & Chauhan, P. S. (2020). Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress. Plant Physiology and Biochemistry, 150, 1-14.
    Morales-Vargas, A. T., López-Ramírez, V., Álvarez-Mejía, C., & Vázquez-Martínez, J. (2024). Endophytic Fungi for Crops Adaptation to Abiotic Stresses. Microorganisms, 12(7), 1357.
    Narayanan, M., & Ma, Y. (2023). Metal tolerance mechanisms in plants and microbe-mediated bioremediation. Environmental Research, 222, 115413.
    Neaman, A., Schoffer, J. T., Navarro-Villarroel, C., Pelosi, C., Peñaloza, P., Dovletyarova, E. A., & Schneider, J. (2024). Copper contamination in agricultural soils: A review of the effects of climate, soil properties, and prolonged copper pesticide application in vineyards and orchards. Plant, Soil & Environment, 70(7).
    Orozco-Mosqueda, M. D. C., Santoyo, G., & Glick, B. R. (2023). Recent Advances in the Bacterial Phytohormone Modulation of Plant Growth. Plants (Basel, Switzerland), 12(3), 606.
    Poveda, J. (2022). Effect of volatile and non-volatile metabolites from Leptosphaeria maculans on tomato calli under abiotic stresses. Plant Stress, 3, 100054.
    Pradhan, S., Tyagi, R., & Sharma, S. (2022). Combating biotic stresses in plants by synthetic microbial communities: Principles, applications and challenges. Journal of Applied Microbiology, 133(5), 2742-2759.
    Raza W, Yousaf S, Rajer F (2016) Plant growth promoting activity of volatile organic compounds produced by biocontrol strains. Sci Lett 4(1):40–43
    Rho, H., Hsieh, M., Kandel, S. L., Cantillo, J., Doty, S. L., & Kim, S. H. (2018). Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microbial ecology, 75, 407-418.
    Roschzttardtz, H., Séguéla-Arnaud, M., Briat, J. F., Vert, G., & Curie, C. (2011). The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. The Plant Cell, 23(7), 2725-2737.
    Schmidt, R., Cordovez, V., De Boer, W., Raaijmakers, J., & Garbeva, P. (2015). Volatile affairs in microbial interactions. The ISME journal, 9(11), 2329-2335.
    Schmitz, L., Yan, Z., Schneijderberg, M., de Roij, M., Pijnenburg, R., Zheng, Q., ... & Cheng, X. (2022). Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome. The ISME Journal, 16(8), 1907-1920.
    Schulz-Bohm, K., Gerards, S., Hundscheid, M., Melenhorst, J., de Boer, W., & Garbeva, P. (2018). Calling from distance: attraction of soil bacteria by plant root volatiles. The ISME Journal, 12(5), 1252-1262.
    Seregin, I. V., & Kozhevnikova, A. D. (2024). The Role of Low-Molecular-Weight Organic Acids in Metal Homeostasis in Plants. International journal of molecular sciences, 25(17), 9542.
    Shaffique, S., Khan, M. A., Imran, M., Kang, S. M., Park, Y. S., Wani, S. H., & Lee, I. J. (2022). Research progress in the field of microbial mitigation of drought stress in plants. Frontiers in Plant Science, 13, 870626.
    Sharifi, R., & Ryu, C. M. (2018). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of botany, 122(3), 349–358.
    Sharma, T., Dreyer, I., Kochian, L., & Piñeros, M. A. (2016). The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Frontiers in plant science, 7, 1488.
    Sheng, X., Sun, L., Huang, Z., He, L., Zhang, W., & Chen, Z. (2012). Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. Journal of environmental management, 103, 58-64.
    Sofy, M. R., Aboseidah, A. A., Heneidak, S. A., & Ahmed, H. R. (2021). ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environmental Science and Pollution Research, 28, 40971-40991.
    Song, G. C., Jeon, J. S., Sim, H. J., Lee, S., Jung, J., Kim, S. G., ... & Ryu, C. M. (2022). Dual functionality of natural mixtures of bacterial volatile compounds on plant growth. Journal of experimental botany, 73(2), 571-583.
    Stassinos, P. M., Rossi, M., Borromeo, I., Capo, C., Beninati, S., & Forni, C. (2022). Amelioration of salt stress tolerance in rapeseed (Brassica napus) cultivars by seed inoculation with Arthrobacter globiformis. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 156(2), 370-383.
    Tahir, H. A., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., ... & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology, 8, 171.
    Tariq, A., Guo, S., Farhat, F., & Shen, X. (2025). Engineering Synthetic Microbial Communities: Diversity and Applications in Soil for Plant Resilience. Agronomy, 15(3), 513.
    Thanabut, S., Sornplerng, P., & Buaboocha, T. (2023). Ectopic expression of rice malate synthase in Arabidopsis revealed its roles in salt stress responses. Journal of plant physiology, 280, 153863.
    Timm, C. M., Carter, K. R., Carrell, A. A., Jun, S. R., Jawdy, S. S., Vélez, J. M., ... & Weston, D. J. (2018). Abiotic stresses shift belowground Populus-associated bacteria toward a core stress microbiome. MSystems, 3(1), 10-1128.
    Tiwari, P., & Bae, H. (2023). Trends in Harnessing Plant Endophytic Microbiome for Heavy Metal Mitigation in Plants: A Perspective. Plants (Basel, Switzerland), 12(7), 1515.
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature reviews microbiology, 18(11), 607-621.
    Tsotetsi, T., Nephali, L., Malebe, M., & Tugizimana, F. (2022). Bacillus for Plant Growth Promotion and Stress Resilience: What Have We Learned?. Plants (Basel, Switzerland), 11(19), 2482.
    Wairich, A., De Conti, L., Lamb, T. I., Keil, R., Neves, L. O., Brunetto, G., ... & Ricachenevsky, F. K. (2022). Throwing copper around: how plants control uptake, distribution, and accumulation of copper. Agronomy, 12(5), 994.
    Xu, E., Liu, Y., Gu, D., Zhan, X., Li, J., Zhou, K., ... & Zou, Y. (2024). Molecular mechanisms of plant responses to copper: From deficiency to excess. International Journal of Molecular Sciences, 25(13), 6993.
    Xu, Q., Qiu, H., Chu, W., Fu, Y., Cai, S., Min, H., & Sha, S. (2013). Copper ultrastructural localization, subcellular distribution, and phytotoxicity in Hydrilla verticillata (Lf) Royle. Environmental Science and Pollution Research, 20, 8672-8679.
    Zboralski, A., & Filion, M. (2023). Pseudomonas spp. can help plants face climate change. Frontiers in microbiology, 14, 1198131.
    Zhang, H., Kim, M. S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C. M., Allen, R., Melo, I. S., & Paré, P. W. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, 226(4), 839–851.
    Zhang, L., Wang, Y., Lei, S., Zhang, H., Liu, Z., Yang, J., & Niu, Q. (2022). Volatiles from the endophytic bacteria Bacillus sp. T6 confer Verticillium resistance in cotton.
    Zhang, L., Wu, X. X., Wang, J., Qi, C., Wang, X., Wang, G., Li, M., Li, X., & Guo, Y. D. (2018). BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana. Frontiers in plant science, 8, 2156.
    Zhao, H., Wu, L., Chai, T., Zhang, Y., Tan, J., & Ma, S. (2012). The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. Journal of Plant Physiology, 169(13), 1243-1252.

    無法下載圖示 校內:2030-07-07公開
    校外:2030-07-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE