| 研究生: |
柯佳欣 Ko, Chia-Hsin |
|---|---|
| 論文名稱: |
以同步小角度/廣角度X光散射鑑定聚丙烯複材與電紡聚丙烯順向纖維之結構 Structure characterization of polypropylene nanocomposites and electrospun aligned polypropylene nanofibers by simultaneous small-angle/wide-angle X-ray scattering. |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 同排聚丙烯複合材料 、同排聚苯乙烯 、電紡絲 、晶型轉換 、同步小角度/廣角度X光散射 |
| 外文關鍵詞: | electrospinning, isotactic polypropylene, isotactic polystyrene, simultaneously SAXS/WAXS |
| 相關次數: | 點閱:124 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以同步小角度/廣角度X光散射鑑定含電紡同排聚苯乙烯纖維之同排聚丙烯複材之結晶型態研究。添加iPS纖維可誘導iPP基材產生β晶型結晶,添加纖維濃度於0.1wt%可誘導出較多的晶型結晶且長週期較iPP多約2.5 nm,增加所添加纖維濃度並不會增加複材之晶型含量Kβ以及長周期LB、Lc。並比較法A及法B兩種製備複材之方法,法A之複材β晶型含量Kβ以及長周期LB、Lc較高。
以不同動態降溫速率R =60、20、5、2 oC/min對MA0.1複材進行熱處理,當降溫速率越快可得到較多的晶型含量,當R =60 oC/min,Kβ。當R =60、20、5 oC/min時,複材之特徵長度LB、Lc及lc並無太大差異;當R =2 oC/min,複材之特徵長度LB、Lc及lc比其他降溫速率之複材多約2.5 nm。
以不同等溫結晶溫度Tc=110、115、120、125、130 oC,對MA0.1進行熱處理,當Tc=120 oC,β晶型含量最高Kβ;當Tc=125 oC,β晶型含量次之Kβ,且複材之特徵長度LB、Lc及lc最大。
以同步小角度/廣角度X光散射分析8wt% iPP順向纖維以及4/4 wt% iPP/sPP順向纖維之微結構變化,深入探討逐步升溫回火效應對纖維內晶體轉換的影響。
In this study, the polymorphism of isotactic polypropylene composites filled with electrospun isotactic polystyrene fibers were characterized by simultaneously small-/wide angle X-ray scattering (SAXS/WAXS). The crystallinity (Φc), the content of -form iPP crystal (Kβ), long period (LB、Lc) and lamellar thickness (lc) of the iPS/iPP composites can be obtain.
iPS fibers are capable of inducing β-form crystal of iPP. When the concentration of iPS fiber in composites is 0.1 wt%, Kβ of composites increased with the addition of iPS fibers. The long period LB, Lc of composites increased about 2.5 nm after the long period of neat iPP. However, when the addition concentration of iPS fibers is larger than 0.1 wt%, Kβ, LB and Lc didn’t increased with the increasing concentration of iPS fibers. There are two different methods (MA and MB) for preparation of iPS/iPP composites. The Kβ, LB and Lc of composites which were prepared by MA are larger.
From dynamic cooling thermal treatment, it was found that the higher cooling rate, the more content of β-form crystal in composites. When MA0.1 underwent the cooling rate of 60 oC/min, Kβ can reach 0.5. However, when MA0.1 underwent the cooling rate of 2 oC/min, the LB and Lc of composites are larger.
From isothermal crystallization thermal treatment, when the isothermal temperature (Tc) is 120 oC, the content of β-form crystal in composites is about 0.55. For Tc= 125 oC, its Kβ is about 0.5 and its LB and Lc are the longest comparing the composites isothermaling at different isothermal temperature.
Through SAXS and WAXS, the internal structure of 8 wt% iPP and 4/4 wt% iPP/sPP aligned electrospun fibers were characterized. By variable-temperature SAXS and WAXS, the crystal variation of these two fibers was investigated. The annealing effect on the structure evolution can studied as well.
[1] H. Schnablegger, Y. Singh, The SAXS Guide, Anton Paar GmbH, (2011)
[2] J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics, John Wiley & Sons Ltd, (2001)
[3] M. Angst, T. Brückel, D. Richter, R. Zorn, Ed., Scattering Methods for Condensed Matter Research: Towards Novel Applications at Future Sources, Forschungzentrum Jülich BmbH, (2012)
[4] S. Brűckner, S. V. Meille, V. Petraccone, B. Pirozzi, “Polymorphism in isotactic polypropylene.”, Progress in Polymer Science 16, 361 (1991).
[5] B. Lotz, A. Lovinger, J. C. Wittmann, “Structure and morphology of poly(propylenes): a molecular analysis.”, Polymer 37, 4979 (1996).
[6] H. Bai, H. Deng, Q. Fu, F. Luo, K. Wang, T. Zhou “New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene.”, Polymer 52, 2351 (2011).
[7] B. Lotz, K. Nakamura, N. Okui, S. Shimizu, A. Thierry, S. Umemoto, “Temperature dependence of crystal growth rate for and forms of isotactic polypropylene.”, Polymer 40, 915 (2008).
[8] J. Varga, et al, “-Modification of isotactic polystyrene: preparation,
structure, processing, properties, and application.”, Journal of
Macromolecular Science, Part B 41,1121 (2002).
[9] J. Varga, J. Karger-Kocsis, “Rules of supermolecular structure formation in sheared isotactic polypropylene melts.” Journal of Polymer Science, Part B : Polymer Physics 34, 657 (1996).
[10] R. Krache, et al. , Macromolecules 40, 6874, (2007).
[11] D.W. van der Meer, PhD thesis, University of Twente (2003).
[12] J. Varga, A. Menynard, “Effect of solubility and nucleating duality of N,N '-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene”, macromolecules 40, 2422 (2007).
[13] J. Varga, “Melting memory effect of the -modification of polypropylene”, Journal of Thermal Analysis And Calorimetry 31, 165-172 (1986)
[14] F. Luo, C. Geng, K. Wang, H. Deng, F. Chen, Q. Fu, B. Na. “New understanding in tuning toughness ofpolypropylene : the role of -nucleated crystalline morphology.” Macromolecules 42, 9325 (2009).
[15] Z. Su, M. Dong, Z. Guo, J. Yu, “Study of polystyrene and acrylonitrile-styrene copolymer as special -nucleating agents to induce the crystallization of isotactic polypropylene.” Macromolecules 40, 4217 (2007).
[16] J. Kang, J. H. He, Z. F. Chen, F. Yang, J. Y. Chen, Y. Cao, M. Xiang, “Effects of beta-nucleating agent and crystallization conditions on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotubes composites”, Polymers for Advanced Technologies 26, 32-40 (2015).
[17] S. Shen, et. al., ”Unique crystallization behaviors of isotactic polystyrene in the presence of MWCNT supported nucleating agent: Lower temperature T()-T() interval and fast cooling preferred formation of b crystals.”, Polymer 95, 26-35 (2016).
[18] J. Schmidtke, G. Strobl, T. Thurn-Albrecht, ”A four-state scheme for treating polymer crystallization and melting suggested by calorimetric and small angle x-ray scattering experiments on syndiotactic polypropylene.” Macromolecules 30, 5804 (1997).
[19] A. Abe, D. R. Bloch, J. Brandup, E. A. Grulke, E. H. Immergut, “Polymer handbook.”, Wiley-Interscience, New York, 829 (1999).
[20] T. Liu, J. Petermann, “Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene.”, Polymer 42, 15, 6453 (2001).
[21] M. Tosaka, K. Yamaguchi, M. Tsuji, “Latent orientation in the skin layer of electrospun isotactic polystyrene ultrafine fibers.”, Polymer 51, 2, 547 (2001).
[22] 李政霖, “含電紡同排聚苯乙烯纖維/聚丙烯複材之製備與熱性質”, 國立成功大學碩士論文 (2016).
[23] 吳怡君, “不同電紡纖維對聚丙烯穿晶形成能力的影響”, 國立成功大學碩士論文 (2011).
[24] A. Turner-Jones, et al.,” Crystalline forms of isotactic polypropylene.”, Macromolecular Chemistry and Physics 75, 1, 134-158 (1964).
[25] M. Dong, Z. Guo, J. Yu, Z. Su, “Study of the assembled morphology of aryl amide derivative and its influence on the nonisothermal crystallizations of isotactic polypropylene”, J. Polym. Sci. B Polym. Phys. 47 , 314–325 (2009).
[26] S. Vleeshouwers, “Simultaneous in-situ WAXS/SAXS and d.s.c. study of the recrystallization and melting behaviour of the α and β form of iPP”, Polymer 38, 3213-3221(1997).
[27] J. Kang, et al.,” Comparative study on the crystallization behavior of β-isotactic polypropylene nucleated with different β-nucleation agents —effects of thermal conditions”, Appl. Polym. Sci. 131, 40115 (2014).