研究生: |
陳仕修 Chen, Shih-Hsiu |
---|---|
論文名稱: |
研究矽介電超原子之太陽光有效耦合特性及其光伏性能的研究 Efficient couplings of solar light with silicon-based dielectric meta-atoms and the investigations on their photovoltaic performances |
指導教授: |
陳嘉勻
Chen, Chia-Yun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 矽超原子 、光束縛 、碳量子點 、混合型太陽能電池 |
外文關鍵詞: | Si meta-atoms, light trapping, carbon quantum dots, hybrid solar cell |
相關次數: | 點閱:85 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由高介電常數的矽超原子所構成的一維奈米材料在近年由於優異的光學性質,因此被廣泛應用於各類光學元件中。藉由在次波長的維度下調控它們的週期配置方式可以因此獲得所需求的電磁特性。在這篇文章中,矽超原子藉由結合奈米球微影術與金屬輔助化學蝕刻,以一維奈米線形式實現精密排列的大面積陣列。在矽奈米線的光學性質中,我們發現有幾種共振模式存在得以因此抑制特定波段下的反射率;為了能有效分析與了解背後的運作機制,在次波長週期性結構的前提下因此導入了等效介質理論。此法可由結構的反射率與穿透率推得等效折射係數與阻抗,進而求得等效介電常數與透磁率的變化,這些變化得益於矽超原子與入射光彼此形成強有力的耦合作用,並且因此形成被稱為波導管的波導共振模式。此種共振模式可有效將入射光往矽基板傳遞,而為了更深入了解這個現象,由電場分布圖的分析得知,當一維矽超原子的週期被設定為300奈米時,在波段涵蓋500至700奈米的區間時可以與太陽光形成有效的耦合現象。除了波導共振模態之外,另一種由矽奈米線間的空腔內所形成的法布里.佩波共振模式,使得矽超原子得以將入射光在結構中重複震盪,達到光束縛的目的。在高頻率的紫外光波段照射下,由電場分布圖分析得知矽奈米線頂端產生多重散射的現象,幫助矽奈米線克服本質矽在紫外光下高反射率的缺點。最後我們將最佳化一維排列的矽超原子與碳量子點結合形成異質接面以利提升載子分離特性,以及提升紫外光波段下的光吸收,從而製備出高轉換效率的太陽能電池,達到35.24 mA/cm2短路電流、0.548V開路電壓、63.4%的填充因子以及12.23%的轉換效率。
Dielectric meta-atoms that are active in the visible spectral regions possess the unprecedented optical properties in nature. The desired electromagnetic behavior can be obtained through engineering their periodic arrangement with spatial configuration in subwavelength regimes. In this study, 1D silicon (Si)-based metamaterials were prepared with the combination of nanosphere-lithographic process and metal-assisted chemical etching. Well-aligned one-dimensional Si meta-atoms with tunable width and spacing were realized, where three distinguished light-absorption characteristics were investigated. First, the nano-resonant cavity, termed as Fabry-Pe ́rot interference enabled to trap the incident lights within the Si meta-atoms behaving as two-dimensional dielectric grating, Next, the neighboring one-dimensional Si meta-atoms cause the resonant coupling between incident light and guided modes. Finally, the resonant near-field confinement of light within Si meta-atoms due to the creation of large index mismatch between Si with surrounding air. By introducing 0D carbon quantum dots that facilitated the charge separation, the correlated 0D/1D hybrid solar cells showed the improved performance with power conversion efficiency of 12.23%, open-circuit voltage of 0.548 V, short-circuit current density of 35.24 mA/cm2, and fill factor of 63.4%.
1. Sun, H., Deng, J., Qiu, L., Fang, X. &Peng, H. Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ. Sci. 8, 1139–1159 (2015).
2. Han, N., Wang, F. &Ho, J. C. One-dimensional nanostructured materials for solar energy harvesting. Nanomater. Energy 1, 4–17 (2012).
3. Machín, A. et al. One-Dimensional (1D) Nanostructured Materials for Energy Applications. Materials (Basel). 14, 2609 (2021).
4. Wang, Z., Zhu, L., Sun, S., Wang, J. &Yan, W. One-dimensional nanomaterials in resistive gas sensor: From material design to application. Chemosensors 9, 198 (2021).
5. Hou, H., Shao, G., Yang, W. &Wong, W.-Y. One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Prog. Mater. Sci. 113, 100671 (2020).
6. Bijalwan, A., Singh, B. K. &Rastogi, V. Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells. Optik (Stuttg). 226, 165994 (2021).
7. Vora, H. D., Santhanakrishnan, S., Harimkar, S. P., Boetcher, S. K. S. &Dahotre, N. B. Evolution of surface topography in one-dimensional laser machining of structural alumina. J. Eur. Ceram. Soc. 32, 4205–4218 (2012).
8. Golosov, E.V et al. Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface. JETP Lett. 90, 107–110 (2009).
9. Abdulkadir, A., Aziz, A. A. &Pakhuruddin, M. Z. Impact of micro-texturization on hybrid micro/nano-textured surface for enhanced broadband light absorption in crystalline silicon for application in photovoltaics. Mater. Sci. Semicond. Process. 105, 104728 (2020).
10. Li, Y. et al. Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells. Nano Energy 11, 756–764 (2015).
11. Kang, J. et al. Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion. Nanotechnology 28, 45401 (2016).
12. Jiang, X., Wang, T., Zhong, Q., Yan, R. &Huang, X. A near-ideal solar selective absorber with strong broadband optical absorption from UV to NIR. Nanotechnology 31, 315202 (2020).
13. Hu, L. &Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249–3252 (2007).
14. Li, J. et al. Design guidelines of periodic Si nanowire arrays for solar cell application. Appl. Phys. Lett. 95, 243113 (2009).
15. Jagota, M. &Tansu, N. Conductivity of nanowire arrays under random and ordered orientation configurations. Sci. Rep. 5, 1–5 (2015).
16. Fazio, B. et al. Strongly enhanced light trapping in a two-dimensional silicon nanowire random fractal array. Light Sci. Appl. 5, e16062–e16062 (2016).
17. Bergin, S. M. et al. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996–2004 (2012).
18. Zhang, C. W. et al. A reduction of thermal conductivity of non-periodic Si/Ge superlattice nanowire: molecular dynamics simulation. Int. J. Heat Mass Transf. 132, 681–688 (2019).
19. Fountaine, K. T., Whitney, W. S. &Atwater, H. A. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes. J. Appl. Phys. 116, 153106 (2014).
20. Moitra, P., Slovick, B. A., Gang Yu, Z., Krishnamurthy, S. &Valentine, J. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl. Phys. Lett. 104, (2014).
21. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).
22. Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).
23. Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics 7, 791–795 (2013).
24. He, Y., He, S., Gao, J. &Yang, X. Nanoscale metamaterial optical waveguides with ultrahigh refractive indices. JOSA B 29, 2559–2566 (2012).
25. Mallik, A. et al. The economic impact of EUV lithography on critical process modules. in Extreme Ultraviolet (EUV) Lithography V vol. 9048 458–469 (SPIE, 2014).
26. Ronse, K. Optical lithography—a historical perspective. Comptes Rendus Phys. 7, 844–857 (2006).
27. Accardo, A. et al. Ultrahydrophobic PMMA micro-and nano-textured surfaces fabricated by optical lithography and plasma etching for X-ray diffraction studies. Microelectron. Eng. 88, 1660–1663 (2011).
28. Maldonado, J. R. &Peckerar, M. X-ray lithography: Some history, current status and future prospects. Microelectron. Eng. 161, 87–93 (2016).
29. Okazaki, S. High resolution optical lithography or high throughput electron beam lithography: The technical struggle from the micro to the nano-fabrication evolution. Microelectron. Eng. 133, 23–35 (2015).
30. Zhang, R., Chen, T., Bunting, A. &Cheung, R. Optical lithography technique for the fabrication of devices from mechanically exfoliated two-dimensional materials. Microelectron. Eng. 154, 62–68 (2016).
31. Colson, P., Henrist, C. &Cloots, R. Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. J. Nanomater. 2013, (2013).
32. Haynes, C. L. &VanDuyne, R. P. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. The Journal of Physical Chemistry B vol. 105 5599–5611 (2001).
33. Barth, S., Hernandez-Ramirez, F., Holmes, J. D. &Romano-Rodriguez, A. Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 55, 563–627 (2010).
34. Güniat, L., Caroff, P. &Fontcuberta i Morral, A. Vapor phase growth of semiconductor nanowires: key developments and open questions. Chem. Rev. 119, 8958–8971 (2019).
35. Kwak, W.-C., Kim, T. G., Lee, W., Han, S.-H. &Sung, Y.-M. Template-free liquid-phase synthesis of high-density CdS nanowire arrays on conductive glass. J. Phys. Chem. C 113, 1615–1619 (2009).
36. Fan, C. et al. Controllable vapor growth of CsPbBr 3/CdS 1D heterostructures with type-II band alignment for high-performance self-powered photodetector. CrystEngComm 24, 275–283 (2022).
37. Hou, Z., Li, G., Lian, H. &Lin, J. One-dimensional luminescent materials derived from the electrospinning process: preparation, characteristics and application. J. Mater. Chem. 22, 5254–5276 (2012).
38. Patil, J.V et al. Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Appl. Surf. Sci. 423, 641–674 (2017).
39. Shi, X. et al. Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. 2015, (2015).
40. Lalanne, P. &Morris, G. M. Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology 8, 53 (1997).
41. Brongersma, M. L., Cui, Y. &Fan, S. Light management for photovoltaics using high-index nanostructures. Nat. Mater. 13, 451–460 (2014).
42. Seo, K. et al. Multicolored vertical silicon nanowires. Nano Lett. 11, 1851–1856 (2011).
43. Wendisch, F. J. et al. Morphology-graded silicon nanowire arrays via chemical etching: engineering optical properties at the nanoscale and macroscale. ACS Appl. Mater. Interfaces 12, 13140–13147 (2020).
44. Snyder, A. W. &Love, J. Optical waveguide theory. (Springer Science & Business Media, 2012).
45. Wang, B. &Leu, P. W. Tunable and selective resonant absorption in vertical nanowires. Opt. Lett. 37, 3756 (2012).
46. Rey, B. M. et al. Fully tunable silicon nanowire arrays fabricated by soft nanoparticle templating. Nano Lett. 16, 157–163 (2016).
47. Wang, Z. &Nabet, B. Nanowire Optoelectronics. Nanophotonics 4, 491–502 (2015).
48. Hua, B., Motohisa, J., Ding, Y., Hara, S. &Fukui, T. Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy. Appl. Phys. Lett. 91, 131112 (2007).
49. Yockell-Lelièvre, H., Lussier, F. &Masson, J.-F. Influence of the particle shape and density of self-assembled gold nanoparticle sensors on LSPR and SERS. J. Phys. Chem. C 119, 28577–28585 (2015).
50. Lee, S., hyung Lee, M., Shin, H. &Choi, D. Control of density and LSPR of Au nanoparticles on graphene. Nanotechnology 24, 275702 (2013).
51. Boyuk, D. S., Chou, L. W. &Filler, M. A. Strong Near-Field Coupling of Plasmonic Resonators Embedded in Si Nanowires. ACS Photonics 3, 184–189 (2016).
52. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of img align= absmiddle Alt= ϵ Eps/Img and μ. Physics-Uspekhi 10, 509–514 (1968).
53. Shelby, R. A., Smith, D. R., Nemat-Nasser, S. C. &Schultz, S. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. 78, 489–491 (2001).
54. Shalaev, V. M. Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2007).
55. Maier, S. A. &Atwater, H. A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 10 (2005).
56. Kittel, C., McEuen, P. &McEuen, P. Introduction to solid state physics. vol. 8 (Wiley New York, 1996).
57. Diaz, A. R. &Sigmund, O. A topology optimization method for design of negative permeability metamaterials. Struct. Multidiscip. Optim. 41, 163–177 (2010).
58. Padilla, W. J., Basov, D. N. &Smith, D. R. Negative refractive index metamaterials. Mater. today 9, 28–35 (2006).
59. Silveirinha, M. &Engheta, N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys. Rev. B 75, 75119 (2007).
60. Haxha, S. et al. Metamaterial superlenses operating at visible wavelength for imaging applications. Sci. Rep. 8, 1–15 (2018).
61. Islam, S. S., Faruque, M. R. I. &Islam, M. T. A near zero refractive index metamaterial for electromagnetic invisibility cloaking operation. Materials (Basel). 8, 4790–4804 (2015).
62. Zheludev, N. I. The road ahead for metamaterials. Science (80-. ). 328, 582–583 (2010).
63. Boltasseva, A. &Atwater, H. A. Low-loss plasmonic metamaterials. Science (80-. ). 331, 290–291 (2011).
64. Zhou, J. et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 95, 223902 (2005).
65. Bohren, C. F. &Huffman, D. R. Absorption and scattering of light by small particles. (John Wiley & Sons, 2008).
66. Staude, I. &Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11, 274–284 (2017).
67. Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749–3755 (2012).
68. Pendry, J. B., Holden, A. J., Stewart, W. J. &Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773 (1996).
69. Shelby, R. A., Smith, D. R. &Schultz, S. Experimental verification of a negative index of refraction. Science (80-. ). 292, 77–79 (2001).
70. Smith, D. R., Schultz, S., Markoš, P. &Soukoulis, C. M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B - Condens. Matter Mater. Phys. 65, 1–5 (2002).
71. Chen, X., Grzegorczyk, T. M., Wu, B. I., Pacheco, J. &Kong, J. A. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 70, 7 (2004).
72. Moitra, P., Slovick, B. A., Gang Yu, Z., Krishnamurthy, S. &Valentine, J. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl. Phys. Lett. 104, 171102 (2014).
73. Esfandyarpour, M., Garnett, E. C., Cui, Y., McGehee, M. D. &Brongersma, M. L. Metamaterial mirrors in optoelectronic devices. Nat. Nanotechnol. 9, 542–547 (2014).
74. Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. &Kivshar, Y. S. All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012).
75. Miroshnichenko, A. E. &Kivshar, Y. S. Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012).
76. Moitra, P. et al. Large-scale all-dielectric metamaterial perfect reflectors. Acs Photonics 2, 692–698 (2015).
77. Proust, J., Bedu, F., Gallas, B., Ozerov, I. &Bonod, N. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 10, 7761–7767 (2016).
78. Kamali, S. M., Arbabi, E., Arbabi, A., Horie, Y. &Faraon, A. Highly tunable elastic dielectric metasurface lenses. Laser Photon. Rev. 10, 1002–1008 (2016).
79. Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).
80. Shalaev, M. I. et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261–6266 (2015).
81. Backlund, M. P. et al. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat. Photonics 10, 459–462 (2016).
82. Rybin, M.V et al. Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commun. 6, 1–6 (2015).
83. Putra, I. R., Wei, T.-C., Hsiao, P.-H. &Chen, C.-Y. Simple cosolvent-treated PEDOT: PSS films on hybrid solar cells with improved efficiency. IEEE J. Photovoltaics 10, 771–776 (2020).
84. Photodetectors, S. Core À Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and. 4015–4022 (2014).