簡易檢索 / 詳目顯示

研究生: 陳世芳
Chen, Shih-Fang
論文名稱: 應用於平面顯示器的矽屬薄膜及有機發光二極體之新穎製程技術研究
The Study of Novel Technologies in Preparation of Silicon-Based Thin Films and OLED for Flat Panel Display Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 91
中文關鍵詞: 平面顯示器有機發光二極體薄膜電晶體
外文關鍵詞: Flat Panel Display, OLED, TFT
相關次數: 點閱:105下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究主題為應用於平面顯示器的矽屬薄膜及有機發光二極體之新穎製程技術。在矽屬薄膜新穎製程技術方面,分別為改善低溫金屬誘發橫向結晶 (metal induced lateral crystallization: MILC)硼(p-型)與磷摻雜(n-型)複晶矽薄膜的結晶長度成長特性、疊層技術(Layer-by-Layer: LBL) 來增強奈米矽晶(nano-crystalline Si: nc-Si) 的結晶特性及低溫金屬橫向結晶複晶矽鍺薄膜的結晶成長特性的電漿增強化學氣相沉積(PECVD)製程技術。而在有機發光二極體(organic light-emittingdiode:OLED)之新穎製程技術方面,在Al/ Alq3/TPD /ITO的OLED元件中,以摻雜無機分子(inorganic molecular)的蒸著(evaporation)製程技術來提升其光電特性。

    首先吾人利用氫化電漿處理 (Hydrogen plasma treamnet)製程技術來改進金屬誘發橫向結晶(metal induced lateral crystallization-MILC) 硼與磷摻雜複晶矽薄膜因金屬與硼/磷吸附效應(gettering effect)和高共熔溫度(eutectic temperature)而降低結晶長度,實驗結果得知在氫化電漿處理後的MILC p-型與n-型複晶矽薄膜的結晶長度可分別由7um/6hr 提昇至40um/6hr與18.6um/6hr 回復到53.9um/6hr。接著吾人在以疊層技術成長奈米矽晶薄膜的氫化電漿(Hydrogen plasma)處理過程同時加入氬氣 (Argon)來改善奈米矽晶薄膜的結晶特性,實驗發現在[氬氣]/([氬氣]+[氫氣])氣體流量比為0.67與0.75時,其奈米矽晶的結晶係數(crystalline fraction: Xc)與移動率的特性,只要成長8層(8-layers)就可達到僅用氫氣時成長16與20層的特性,大大降低奈米矽晶薄膜成長的時間。另外,應用金(Au)誘發橫向結晶技術來成長複晶矽鍺薄膜,研究結果發現,金誘發複晶矽鍺薄膜在500℃時,其結晶速率可達15.1~22.8 um/hr,相較於鎳金屬誘發有較低的結晶溫度與較快的結晶速率。此新穎低溫成長矽屬薄膜的技術(Low temperature poly-Silicon-based: LPTS)可應用於玻璃基板大面積生產的薄膜電晶體(Thin film transistor : TFT)製程。

    接著,以蒸著製程研製有機發光二極體,吾人研發兩種新穎製程技術來提升元件的光電特性。其一為分別在Alq3層/TPD層同時摻雜碘(iodine)分子,研究結果顯示,相較於無摻雜碘分子的製程,在電壓 10伏特時,發光亮度可由2800 cd/m2 提昇到 8000 cd/m2, 而驅動電壓(@100cd/m2)可由7.5 伏特降低至5.2 伏特。其二為在TPD層採用雙摻雜無機元素(氮分子與碘分子)製程技術,實驗結果得知,相較於無摻雜的製程,在電壓8伏特與10伏特時,發光強度可分別提高 9.5 倍與 5.6 倍。此利用蒸著設備的製程簡易新穎且技術,若應用於大面積顯示器生產,將可有效的降低製造成本。

    In this dissertation, we report the investigation of novel technologies to prepare silicon-based thin films, i.e., metal-induced lateral crystallization (MILC) poly-Si, poly-SiGe and nano-crystalline Si (nc-Si) and organic light emitting diodes (OLEDs) for flat panel display application.

    Firstly, we use hydrogen treatment to improve boron or phosphorus dopant induced growth length retardation in metal-induced lateral crystallization (MILC) of amorphous silicon film (a-Si). Compared to without hydrogen treatment, experimental results show that the grown poly-silicon length in boron and phosphorus doped a-Si film can be increased from 7 um to 40 um and 18.6um to 53.9um after 6 hours MILC annealing, respectively. Since, the dopant atoms generate a large of dangling bonds, which then capture the metal atoms to interrupt the MILC processing thus retarding the growth length. Hence, the obvious promotion in MILC length is attributed to the passivation of dangling bonds with hydrogen atoms.

    Next, we presents the crystallization fraction (Xc) performance of the nano-crystalline silicon (nc-Si:H) thin film prepared with layer-by-layer technique and Ar/H2 annealing with various gas flow ratios of argon to total R(Ar)=[Ar]/([Ar]+[H2]). The Hall mobility achieved in the 8-layers films was 9.95 cm2/V-s and 11.7 cm2/V-s for R(Ar)=0.67 and R(Ar)=0.75, respectively. These mobility values are comparable to the ones obtained for 16- and 20-layers films prepared with H2 annealing only (R=0).

    Then, the growth of poly-SiGe thin film by gold (Au) metal-induced lateral crystallization (MILC) technology under various conditions was reported. The MILC growth rate induced by Au is high and can attain 15.1~22.8 um/h under 500℃ annealing. The rate is much faster than the conventional metal-induced solid-phase crystallization with Ni. Best of the all, even the annealing temperature can be lower to 450℃.

    Finally, we investigate the effect of inorganic molecular, i.e., iodine and nitrogen, doped on OLED with the configuration Al/Alq3(Aluminum Tris-(8-hydroxygninoline))/TPD(N, N’-diphenyl-N, N’bis (3-methylphenyl)-1, l’-bipheny-4, 4’-diamine)/Indium Tin Oxide (ITO). The performances have been significantly improved by doping iodine (I2) on both Alq3 and TPD layers. The luminance is promoted from 2800 cd/m2 without doping to 8000 cd/m2 with I2 doping under bias 10 V. Furthermore, the driving voltage (@100cd/m2) was reduced from 7.5 V without doping to 5.2 V with I2 doping. We attribute the promotions to the reduction of the electron and hole injection energy barrier at Al/Alq3 and TPD/ITO interfaces and the expansion of trap energy states beneath the LUMO of Alq3 generated by I2 doping. On the other hand, simultaneously doping iodine (I2) and nitrogen (N2) inorganic dopants on hole transport layer (HTL), i.e., TPD layer, to promote the output luminance has been studied in detail. Experimental results show that the output luminance can be significantly promoted up to 950% and 560% in magnitude at bias of 8V and 10V, respectively. We attribute the obvious promotion to I2/N2 dual-dopant generated multi-hopping-sites, which enhance the interfering action of guest hopping site thus raising the output luminance in the OLEDs.

    中文摘要 (1) 各章中文提要 (3) Abstract (18) 誌謝 (19) 目錄(CONTENTS) (I) Table Captions (IV) Figure Captions (V) Chapter 1 Introduction 1 1-1 Background 1 1-1-1 Silicon-Based Thin Films 1 1-1-2 Organic Light Emitting Diodes (OLEDs) 3 1-2 Preface of this Dissertation 4 Chapter 2 Recovering Boron and Phosphorus Induced Retardation of Metal- Induced Lateral Crystallization (MILC) Length with Hydrogen Treatment 9 2-1 Introduction 9 2-2 Preparation process for the MILC Boron and Phosphorus -Doped Si thin films 10 2-3 Characterization of the developed MILC Boron-Doped Si thin films 11 2-4 Characterization of the developed MILC Boron-Doped Si thin films 13 2-5 Conclusion 14 Chapter 3 Enhancing nano-crystalline silicon thin film crystallization fraction performance with argon and hydrogen annealing 24 3-1Introduction 24 3-2 Preparation process for the nano-crystalline Si thin films 25 3-3 Characterization of the developed nano-crystalline Si thin films 26 3-4 Conclusion 27 Chapter 4 Low Temperature Growing poly-SiGe Thin Film by Au Metal-Induced Lateral Crystallization (MILC) with Fast MILC Growth Rate 35 4-1 Introduction 35 4-2 Preparation process for the Au MILC Poly-SiGe thin films 36 4-3 Characterization of the developed Au MILC Poly-SiGe thin films 37 4-4 Conclusion 39 Chapter 5 Improving the optic-electron performance of organic light- emitting diodes with iodine dopant 47 5-1Introduction 47 5-2Device Design, Fabrication and Measurement 48 5-3Results and discussion 49 5-4Conclusion 52 Chapter 6 Raising the output luminance of organic light-emitting diodes with inorganic dual-dopant system 61 6-1Introduction 61 6-2Device Fabrications and Experimental 62 6-3The performance of organic light-emitting diodes with inorganic dual-dopant system 63 6-4Conclusion 67 Chapter 7 Conclusions and Prospects 77 7-1Conclusions 78 7-2Prospects 78 Reference 85 Appendix A Author's Resume Appendix B Author's Related Publications

    [1]K.H. Lee, Y. K. Fang and S. H. Fan, “Au metal-induced lateral crystallisation (MILC) of hydrogenated amorphous silicon thin film with very low annealing temperature and fast MILC rate”, Electronics Letter, Vol. 35, No.13, pp.1108-1109, 1999.
    [2]S. F. Chen, Y. K. Fang, W. D. Wang, C. Y. Lin and C. S. Lin, “Low temperature growing poly-SiGe thin film by Au metal-induced lateral crystallization (MILC) with fast MILC Growth Rate”, Electronics Letters, Vol. 39, No. 22, pp. 1612-1614, 2003.
    [3]A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, 337, pp.1-6, 2001.
    [4]G. A. Bhat, Z. Jin, H. S. Kwork and W. Wong, “Effects of the longitudinal grain boundaries on performance of MILC-TFT’S”, IEEE Electron Device Letters, Vol.20, No.2, pp.97-99, 1999.
    [5]S.W. Lee and S.K., Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization”, IEEE Electron Device Letters, vol.17, no.4 , pp.160-162, 1996.
    [6]S.W. Lee, T.H. Ihn and S.K. Joo, “Fabrication of high-mobility p-channel poly-Si thin film transistor by self-aligned metal-induced lateral crystallization”, IEEE Electron Device Lett., vol.17, no.8, pp.407-409, 1996.
    [7]Z. Jin, K. Moulding, H.S. Kwok and M. Wong, “The effect of extended heat treatment on Ni induced lateral crystallization of amorphous silicon thin films”, IEEE Trans. on Electron Devices, vol.46, no.1, pp.78-82, 1999.
    [8]S.W. Lee, Y.C. Jeon and S.K. Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Aplpied. Physical Letters, vol.66, no.13, pp.1671-1673, 1995.
    [9]M. S. Haque, H. A. Naseem and W. D. Brown, “Aluminum-induced crystallization and counter-doped of phosphorous-doped hydrogenated amorphous silicon at low temperature”, Journal of Applied Physics, vol.79, no.10, pp7529-7536, 1996
    [10]T. Aoyama, G.. Kawachi, N, Konishi, Y. Okajima and K. Miyata, “Crystallization of LPCVD silicon films by low temperature annealing”, Journal of the Electrochem. Society, vol136, no.4, pp.1169-1173, 1989.
    [11]S. M. Choe, J. A. Ahn and O. Kim, “ Fabraction of laser-annealed poly-TFT by forming a SixGe1-x thermal barrier”, IEEE Electron Device Letters, Vol.22, No.3, March 2001.
    [12]T. Ma and M. Wong, “Dopant and thickness dependence of metal-induced lateral crystallization of amorphous silicon films “, Journal Applied Physics, Vol. 91, No.3, pp.1236-1241, 2002.
    [13]J. D. Plummer, M. D. Deal and P. B. Griffin, in SILICON VLSI TECHNOLOGY: Fundamentals, Practice and Modeling, Prentice Hall, Inc., 2000.
    [14]S. F. Chen, Y. K. Fang, P. C. Lin, T. H. Lee, C. Y. Lin, C. S. Lin and T. H. Chou,” Improving boron induced retardation of metal-induced lateral crystallization (MILC) length with hydrogen treatment”, Japanese Journal of Applied Physics, Vol.44, No.33, pp. L1039 - L1041, 2005.
    [15]S. N. Choe, J. H. Ahn and O. Kim, “ Fabrication of laser-annealed poly-TFT by forming a SixGe1-x thermal barrier”, IEEE Electron Device Letters, Vol.22, No.3, pp121-123, 2001.
    [16] J. A. Tsai, A. T. Tang, T. Noguchi, and R. Reif, “‘Effects of Ge on Material and Electrical Properties of Polycrystalline SixGe1-x Thin-Film Transistors”, Journal Electrochemical Society, Vol.142, No.9, pp.3220-3225, 1995.
    [17] H. C. Lin, C. Y. Chang, W. H. Chen, W. C. Chang, T. G. Jung and H. Y. Lin, “Effects of SiH4, GeH4 and B2H6 on the nucleation and deposition of polycrystalline SixGe1-x film”, Journal of. Electrochemical Society, Vol.141, No.9, pp.2559-2563, 1994.
    [18] S. F. Chen, Y. K. Fang, W. D. Wang, C. Y. Lin and C. S. Lin, “Low temperature growing poly-SiGe thin film by Au metal-induced lateral crystallization (MILC) with fast MILC growth rate”, Electronics Letters, Vol. 39, No. 22, pp. 1612-1614, 2003.
    [19] A. Orpella, C. Voz, J. Puigdollers, D. Dosev, M. Fonorodona, D. Soler, J. Bertomeu, J. M. Asensi, J. Andreu and R. Alcubilla, “Stability of hydrogenated nanocrystalline silicon thin-film transistors “, Thin Solid Films 395, pp.335-338, 2001.
    [20] C. Y. Lin, Y. K. Fang, S. F. Chen, P. C. Lin, C. S. Lin, T. H. Choua, J. S. Hwang and K. I. Lin,” Growth of nanocrystalline silicon thin film with layer-by-layer technique for fast photo-detecting applications “, Material Science Engineering B, 127, pp.251-254, 2006
    [21] J. Meier, R. Fluckiger, H. Keppner and A. Shah, “Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? “, Applied Physics Letters, 65, pp.860-862, 1994.
    [22] P. R. I. Cabarrocas, “New approaches for the production of nano-, micro-, and polycrystalline silicon thin films“, Physica Status Soidi (c) 1(5), pp.1115-1130, 2004.
    [23] S. F.Chen, Y. K. Fang, T. H. Lee, C. Y. Lin, P. J. Lin, S. H. Chang and T. H. Chou, “Enhancing nano silicon thin film performance with argon plus hydrogen annealing”, Thin Solid Films, 2006, In press.
    [24] C. W. Yang, Y. K. Fang, S. F. Chen, C. S. Lin, C. Y. Lin, W.D. Wang, T.H. Chou, P.J. Lin, M. F. Wang, T. H. Hou, L. G. Yao, S. C. Chen, and M. S. Liang, “Reliability studies of Hf-doped and NH3-nitrided gate dielectric for advanced CMOS application”, IEE Proceedings -- Circuits, Devices & Systems, Vol152, No. 5, pp. 407-410,2005.
    [25] R.M. Lin, J. C. Li, Y. L. Chou and M. C. Wu, “Using the taguchi method to improve the brightness of AlGaInP MQW LED by wet oxidation”, IEEE Photonics Technology Letters, Vol. 18, No. 15, pp.1642-1644, 2006
    [26] Sung Hwan Kim, Hye Young Choi and Jin Jang, “Effect of source/drain undercut on the performance of pentacene thin-film transistors on plastic”, Applied Physics Letters, Vol.85, N..19 pp.4514-4516, 2004.
    [27] Y. J. Z. Rang, M. I. Nathan, P. P. Ruden, C. R. Newman and C. D. Frisbie, “Pentacene organic field-effect transistor on metal substrate with spin-coated smoothing layer”, Applied Physics Letters, Vol.85, No.19 pp.4406-4408, 2004.
    [28] X. Jiang, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices”, Applied Physics Letters, Vol.83, pp.1875-1877, 2003.
    [29] J. Lee and Y. Park, ”High efficiency organic light-emitting devices with Al/NaF cathode”, Applied Physics Letters, Vol.82, pp.173-175, 2003.
    [30] G.. Sakamoto, C. Adachi, T. Koyama, Y. Taniguch, C. D. Merrit, H. Murta and Z. H. Kafafi, “Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules “, Applied Physics Letters, Vol.75, No. 6, pp.766-768, 1999.
    [31] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S. T. Lee, ”Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer”, Applied Physics Letters, Vol.83, pp.1038-1040, 2003.
    [32] Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang and G. Dong, ”High efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphtacence multiple quantum wells”, Applied Physics Letters, Vol.81, pp.3540-3542, 2002.
    [33] W. J. Lee, Y. K. Fang, H. C. Chiang, S. F. Ting, S. F. Chen, W. R. Chang, C. Y. Lin, T. Y. Lin and J.-J. Ho,” Dramatic improving luminous efficiency of organic light emitting diodes under low driving current using nitrogen doped hole transporter”, Solid-State Electronics, Vol. 47, pp. 1127-1130, 2003.
    [34] S. F. Chen, Y. K. Fang, S. C. Hou, C. Y. Lin, C. S. Lin, W. R. Chang and T. H. Chou,” The effect of doping iodine on organic light-emitting diode “, Organic Electronics, 6 2005 pp.92-96.
    [35] S.F. Chen, Y. K. Fang, S. C. Hou, F. S. Lin, C. Y. Lin, S. H. Chang and T. H. Chou, “Significantly enhancing luminance of organic light-emitting diodes (OLEDs) with doping iodine and nitrogen treatment”, 2006 International Conference on Solid State Devices and Materials (SSDM 2006) pp.780-781, 2006, Yokohama, Japan.
    [36] W. J. Lee, Y. K. Fang, H. C. Chiang, S. F. Ting, S. F. Chen, W. R. Chang, C. Y. Lin, T. Y. Lin, W. D. Wang, S. C. Hou and J.-J. Ho, “ Improving turn on voltage and driving voltage of organic electroluminescent devices with nitrogen doped electron transporter”, Solid-State Electronics, Vol. 47, pp. 927-929, 2003.
    [37] P. E. Burrows and S. R. Forrest, “Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices“, Applied Physics Letters, Vol.64, No.17, pp.2285-2287, 1994.
    [38] J. Blochwitz, M. Pfeiffer, T. Fritz and K. Leo, “Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material“, Applied Physics Letter, Vol.73, No.6, pp. 729-731, 1998.
    [39] X. Zhou, M. Pfeiffer, J. Blochwitz, A.Werner, A. Nollau, T. Fritz and L. Leo, “Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer”, Applied Physics Letters, Vol.78, pp.410-412, 2001.
    [40] C. Gansorig and A. Fujihira, “Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer “, Applied Physics Letters, Vol.77, No.25, pp. 4211-4213, 1996.
    [41] http://www.nobel.se/chemistry/laureates/2000/chemadv.pdf
    [42] D.M. Pai, J.F. Yanus and A. M. Stolk, “Trap-Controlled Hopping Transport”, The Journal of Physical Chemistry, 88(20), pp.4714-4717, 1984.
    [43] J. C. Zolper, S. J. Pearton. C. R. Abernthy and C. B. Vartuli, “Nitrogen and fluorine ion implantation in In xGa12 xN”,Applied Physics Letter, 66(22), pp.3042-3044, 1995.
    [44] P. E. RODNEY, in Constitution of Binary Alloys: First Supplement, McGraw-Hill Book Company, 1965.
    [45] C. T. Sah, J. Y. C. Sun, TZOU and J. J. T. Tzou, “Study of the atomic models of three donorlike defect in silicon metal-oxide-semiconductor structures from their gate material and process dependancies“, Journal Applied Physics, Vol. 55, pp.1525-1545, 1984.
    [46] D. R. Lide, in CRC Handbook of Chemistry abd Physics, CRC Press, 84th, 2003-2004, p. 9-83.
    [47] S. Kasouit, J. Damon-Lacoste, R. Vanderhaghen and P. R. I. Cabrrocas, “Contribution of plasma generated nanocrystals to the growth of microcrystalline silicon thin films“, Journal of Non-Crystalline Solids, 338-340, pp.86-, 2004.
    [48] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Pearson Education Taiwan Ltd, 2005.
    [49] H. Makihara, A. Tabata, Y. Suzuoki and T. Mizutanit, “Effect of the hydrogen partial pressure ratio on the properties of uc-Si : H films prepared by rf magnetron sputtering”, Vacuum 59, pp.785-791,2000.
    [50] D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, New-York NY, 1988.
    [51] W. C. Choi, C. K. Kim, E. K. Kim, C. M. Shim, D. Jung and C. Y. Park, “Role of hydrogen in the photoluminescence and the formation of nanocrystalline silicon“, Journal of Korean Physical Society, 36, pp.23-28, 2000.
    [52] S. W. Lee, P. S. Chen, M. J. Tsai, C. T. Chia, C. W. Liu and L. J. Chen, “The growth of high-quality SiGe films with an intermediate Si layer”, Thin Solid Films, 447-448, pp.302-305, 2004.
    [53] H. Kanno, I. Tsunoda, A. Kenjo, T. Sadoh, S. Tamaguchi and M. Miyao, “Metal-induced solid-phase crystallization of amorphous SiGe film on insulator”, Solid State Devices and Materials (SSDM), Nagoya, Japan, 2002.
    [54] J. Kalinowski, L. C. Picciolo, H. Murata and Z. H. Kafafi, “Effect of emitter disorder on the recombination zone and the quantum yield of organic electroluminescent diodes “, Journal Applied Physics, Vol.89, No.3, pp. 1866-1874, 2001.
    [55] H. Murata C. D. Merritt and Z. H. Kafafi, “Molecular organic light-emitting diodes with temperature-independent quantum efficiency and improved thermal durability“, Applied Physics Letters, Vol. 75, No.21, pp. 3252-3254, 1999.
    [56] H. Mattoussi, H. Murata, C. D. Merrit, Y. Iizumi, J. Kido and Z. H. Kafafi, “Photoluminescence quantum yield of pure and molecularly doped organic solid films “, Journal Applied Physics, Vol. 86, No.3, pp. 2642-2650, 1999.
    [57] B. W. D’Andrade, M. A. Baldo, C. Adachi and J. Brooks, ”High efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence”, Applied Physics Letters, Vol.79, pp.1045-1047, 2001.
    [58] Y. Shao and Y. Yang, “Naturally formed graded junction for organic light-emitting diodes “, Applied Physics Letters, Vol.83, No.12, pp. 2453-2455, 2003.
    [59]W. Rieb, H. Riel, P. F. Seidler and H. Vestweber, “Organic-inorganic multiplayer structures: a novel route to highly efficiency organic light-emitting diodes”, Synthenic Metals, Vol.99, pp.213-218, 1999.
    [60] A. B. Chwang, R. C. Kwong and J. J. Brown, “Graded mixed-layer organic light-emitting devices”, Applied Physics Letters, Vol.80, pp.725-727, 2002.
    [61] S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials And Devices. Gordon and Breach Publishers; 1997.
    [62] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest and J. A. Cronin, “Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices”, Journal Applied Physics, Vol.79, No.10, pp.7991-8006, 1996.
    [63] R. H. Young, C. W. Tang and A. P. Marchetti, “Current-induced fluorescence quenching in organic light-emitting diodes“, Applied Physics Letters, Vol.80, No.5, pp. 874-876,2002.
    [64] F. Huang and A. G. MacDiarmid, “An iodine-doped polymer light-emitting diode“, Applied Physics Letters, Vol.71, No. 17, pp. 2415-2417, 1997.
    [65] C. Qiu and H. Chen, “Dependence of the current and power efficiencies of organic light-emitting diode on the thickness of the constituent organic layers”, IEEE Transaction Electron Devices, Vol.48, No.9, pp. 2131-2137, 2001.
    [66] G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguch, C. D. Merrit, H. Murta and Z. H. Kafafi, “Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules”, Applied Physics Letters, 75(6), pp.766-768, 1999.
    [67] X. Zhou, M. Pfeiffer, J. S. Huang, J. Blochwitz-Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maennig and K. Leo, “Low-voltage inverted transparent vacuum deposited organic light-emitting diodes using electrical doping “, Applied Physics Letters, 81(5), pp.922-924, 2002.
    [68] X. Zhou, D. S. Qin, M. Pfeiffer, J. Blochwitz-Nimoth, A. Werner, J. Drechsel, B. Maennig and K. Leo, “High-efficiency electrophosphorescent organic light-emitting diodes with double light-emitting layers“, Applied Physics Letters, 81(21), pp.4070-4072, 2002.
    [69] M. Pfeiffer, K. Leo, X. Zhou, J.S. Huang, M. Hofmann, A. Werner and J. Blochwitz-Nimoth, “Doped organic semiconductors: Physics and application in light emitting diodes”, Organic Electronics 4, pp.89-103, 2003.
    [70] D. Gebeyehu, K. Walzer, G. He, M. Pfeiffer, K. Leo, J. Brandt, A. Gerhard, P. St¨oßel and H. Vestweber, “Highly efficient deep-blue organic light-emitting diodes with doped transport layers”, Synthetic Metals 148, pp.205-211, 2005.
    [71] C. Williams, S. Lee, J. Ferraris and A. A. Zakhidov, “Exciton–dopant and exciton–charge interactions in electronically doped OLEDs”, Journal of Luminescence 110 , pp396-406, 2004.
    [72] F. Yang, M. Shtein and S. R. Forrest, “Controlled growth of a molecular bulk heterojunction photovoltaic cell”, nature materials 4, pp.37-41, 2005.
    [73] S. F. Chen, Y. K. Fang, S. C. Hou, T. Y. Tsai, C. S. Hung, C. Y. Lin and T. H. Chou “Observation of negative differential resistance (NDR) in organic lighting emitting diode”, 2nd International Symposium on Point defects and Non-stoichiometry, Kaohsiung, Taiwan, October 4-6, 2005.
    [74] W. D. Gill, “Drift mobilities in amorphous in charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbsazole “, Journal Applied Physics, 43(12), pp.5033-5040, 1972.
    [75] J. Lee, D. K. Hwang, C. H. Park, S. S. Kim,and S. Im, “Pentacene-based photodiode with Schottky junction”,Thin Solid Films 451-452 , pp.12-15, 2004.
    [76] M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystal and Polymer, 2rd, Oxford University Press, N.Y., 1999, pp.379-425.

    下載圖示 校內:立即公開
    校外:2006-12-22公開
    QR CODE