簡易檢索 / 詳目顯示

研究生: 葛仁多
Praditya, Ananta
論文名稱: 二氧化碳趨勢分析及投入產出生命週期評估以印尼石油煉製業為例
CO2 Emissions Trend and Input Output Life Cycle Assessment of Indonesia's Petroleum Refining Sector
指導教授: 林素貞
Lin, Sue-Jane
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 123
外文關鍵詞: Petroleum refining sector, CO2 emissions trend, Energy consumption, Input-Output analysis, Input-Output Life Cycle Assessment
相關次數: 點閱:78下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The petroleum refining sector is one of the largest industrial consumer of energy in Indonesia. Almost all of energy used in the process of petroleum refining used oil fuel for combustion. GHG emissions is the main problem from petroleum refining sector. Petroleum refining sector is the one of sectors that linked with many other sectors and the products are crucial part of the Indonesia economy, contributing a large sources of energy and supporting other high-value product. Gasoline, jet fuel, kerosene, naphtha are the examples of high-value output from petroleum refining that are very essential to Indonesia’s economic. The products from petroleum can help to boost Indonesia’s economic growth, but this growth in line with environmental impact. The aim of this study is to analyze the role of the petroleum refining in increased the economic, energy used and environmental Impact in Indonesia.
    This study uses several method to collect and process the data. Divisia index decomposition is used to identify the factor causing high CO2 emission of petroleum sector. The result reveals, economic growth is the factor that accelerates the increase of CO2 emission. On other hand, share of production be an influent factor in the decline of CO2 emissions. Input output analysis is used to determine top 10 of forward and backward linkage effect and also determined the sensibility index of dispersion and power index of dispersion. Petroleum refining sector was in top 10 forward linkage effect but not in top 10 backward linkage effect during 2005, 2008 and 2010. Moreover, the result of sensibility index of dispersion was higher than power index of dispersion. This result shows petroleum refining is more important in serving other industries as input product or services than absorbing other industry products. Input output analysis combined with life cycle assessment to analyses the major environmental impacts direct and indirect of the petroleum refining sector. TRACI 2 and IMPACT 2002+ uses to evaluate the environmental impacts. TRACI 2 shows the highest impact was ecotoxicity followed by global warming. Impact 2002+ shows four-step results, characterization, damage assessment, normalization and single step. On the characterization and damage assessment, non-renewable energy was the highest of 14 other impacts. Based on normalization, the largest impact shown by resources followed by human health, climate change and ecosystem quality.
    Petroleum refining linked with many sectors, shown from 2008 and 2010 the environmental impact was dominated by indirect result from transportation, electricity and cement industry. Therefore, needs to increase in technology to become more environmental-friendly and produce less carbon. Another suggestion is to promote sustainable development by developing renewable energy sources.

    Abstract ............................ i Acknowledgment ..................................iii Contents ........................................... v List of Table .............................. ix List of Figure .............................. xi Chapter 1 Introduction ................................. 1 1.1 Research Background .................... 1 1.2 Research Objective .......................... 3 1.3 Research Framework and Scope .................. 3 Chapter 2 Industrial Background .................... 7 2.1 Industrial Structure ..................... 7 2.2 Fundamental and Process ............................ 9 2.2.1 Desalting and Dewatering 2.2.2 Distillation .............................. 10 2.2.3 Cracking ...................................... 11 2.2.4 Reforming ............................. 11 2.3 Industrial Impact ........................... 11 2.3.1 Current Energy Condition and Issues.............. 12 2.3.2 Economic Impact ......................... 17 2.3.3 Environmental Impact ........................ 18 2.4 Policy Implication .............................. 20 Chapter 3 Literature Review and Methodology ............ 27 3.1 Decomposition Analysis ............................ 27 3.2 Input – Output Analysis ..................... 28 3.3 Input – Output Life Cycle Assessment ............... 30 3.4 Decomposition Method .......................... 31 3.4.1 Data Consolidation ......................... 33 3.5 Input – Output Analysis .......................... 34 3.6 Input – Output Life Cycle Assessment ............... 40 3.6.1 Impact Assessment Model ......................... 42 Chapter 4 Decomposition Analysis ....................... 51 4.1 Introduction ................................. 51 4.2 Data Consolidation and Result ...................... 51 4.3 Summary ................................... 54 Chapter 5 Input – Output Analysis (I-O Analysis) ....... 57 5.1 Introduction ................................. 57 5.2 Data Consolidation & Result ...................... 57 5.3 Summary ....................................... 64 Chapter 6 Input – Output Life Cycle Assessment (I-O LCA) ....... 65 6.1 Introduction .............................. 65 6.2 Data Consolidation .......................... 66 6.3 Limitation and Assumptions ................... 67 6.4 Result and Discussion ..................... 68 6.4.1 Traci 2........................................ 69 6.4.2 Impact 2002 ................................... 76 6.5 Comparison between Traci 2 and Impact 2002+......... 88 6.6 Summary ................................ 90 Chapter 7 Conclusions ........................... 93 7.1 Conclusions ................................ 93 7.2 Suggestions ................................ 94 References .................................. 97 Appendix 1 Classification Input Output Table 2005, 2008 and 2010 ....................... 103 Appendix 2- Result of Forward and Backward linkage effect in 2005 ..................... 106 Appendix 3- Result of Forward and Backward linkage effect in 2008 ..................... 109 Appendix 4- Result of Forward and Backward linkage effect in 2010 ..................... 112 Appendix 5- Major Impact for the top 20 most important sectors in 2005 (TRACI method .......... 115 Appendix 6- Major Impact for the top 20 most important sectors in 2008 (TRACI method) ................ 117 Appendix 7- Major Impact for the top 20 most important sectors in 2010 (TRACI method) ................... 119 Appendix 8- Impact 2002+ Top 20 Sector for Normalization step during 2005, 2008 and 2010 ............. 121

    1. 1997. Oil Spills from Vessels (1960-1995): An International Historical Perspective. Aspen Publishers, New York.
    2. Ang, B.W., & Pamdiyan , G, 1997. Decomposition of energy-induced CO2 emissions in manufacturing. Energy Economic 193, 363-374.
    3. Bilec, M.M., Ries, R.J., Matthews, H.S., 2010. Life-Cycle Assessment Modeling of Construction Processes for Buildings. Infrastructure systems, 199 - 205.
    4. Chang, Y.-T., Shin, S.-H., Lee, P.T.-W., 2014. Economic impact of port sectors on South African economy: An input–output analysis. Transport Policy 35, 333-340.
    5. Chang, Y.A., Ries, R.J., Wang, Y.W., 2010. The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model. Energy Policy 38, 6597-6603.
    6. Consultants, P., 2011. SimaPro 7.3 Introduction to LCA.
    7. EIA, 2014. Indonesia Energy consumption. Energy International administratif.
    8. Goverment, I., 2015. Intended Nationality Determined Contribution Republic of Indonesia, in: Foresty, M.o.E.a. (Ed.).
    9. Han, S.-Y., Yoo, S.-H., Kwak, S.-J., 2004. The role of the four electric power sectors in the Korean national economy: an input–output analysis. Energy policy 32, 1531-1543.
    10. Hendrickson, C.T., Lave, L.B., Matthews, H.S., 2006. Environmental life cycle assessment of goods and services: an input-output approach. Resources for the Future.
    11. Herrmann, I.T., Moltesen, A., 2015. Does it matter which Life Cycle Assessment (LCA) tool you choose?–a comparative assessment of SimaPro and GaBi. Journal of Cleaner Production 86, 163-169.
    12. Indonesia, M.o.E.a.M.R.R.o., 2014. Hand Book of Energy & Economic Statistic of Indonesia 2014. Pusdatin ESDM, Jakarta, Indonesia.
    13. Indonesia, S., 2006. Mining Statistics of Oil and Natural Gas 2000-2005. BPS-Statistics Indonesia, Jakarta, Indonesia.
    14. Indonesia, S., 2008. Indonesia Input-Output Table 2005. Badan Pusat Statistik, Jakarta, Indonesia.
    15. Indonesia, S., 2009. Mining Statistics of Oil and Natural Gas 2003-2008. BPS-Statistics Indonesia, Jakarta, Indonesia.
    16. Indonesia, S., 2010. Indonesia Input-Output Table 2008. Badan Pusat Statistik, Jakarta, Indonesia.
    17. Indonesia, S., 2012. Mining Statistics of Oil and Natural Gas 2007-2011. BPS-Statistics Indonesia, Jakarta, Indoenesia.
    18. Indonesia, S., 2015a. Indonesia Input-Output Table 2010. Badan Pusat Statistik, Jakarta, Indonesia.
    19. Indonesia, S., 2015b. Mining Statistics of Oil and Natural Gas 2010-2014. BPS-Statistics Indonesia, Jakarta, Indonesia.
    20. Indonesia, S., 2015c. Production of Fuels 1996-2014. BPS - Statististics Indonesia.
    21. Jane C. Bare, G.A.N., David W. Pennington,, McKone, a.T., 2003. The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts-TRACI. Industrial Ecology 6, 49 - 78.
    22. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R., 2003. IMPACT 2002+: a new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment 8, 324-330.
    23. Koellner, T., Suh, S., Weber, O., Moser, C., Scholz, R.W., 2007. Environmental Impacts of Conventional and Sustainable Investment Funds Compared Using Input‐Output Life‐Cycle Assessment. Journal of Industrial Ecology 11, 41-60.
    24. Koellner, T., Suh, S., Weber, O., Moser, C., Scholz, R.W., 2007. Environmental Impacts of Conventional and Sustainable Investment Funds Compared Using Input-Output Life-Cycle Assessment. Industrial Ecology 11, 41 - 60.
    25. Kwak, S.-J., Yoo, S.-H., Chang, J.-I., 2005. The role of the maritime industry in the Korean national economy: an input–output analysis. Marine Policy 29, 371-383.
    26. Lave, L.B., 1995a. Using input-output analysis to estimate economy-wide discharges. Environmental Science & Technology 29, 420A-426A.
    27. Lave, L.B., Cobras-Flores, E., Hendrickson, C. and McMichael, F., 1995b. Using input-output analysis to estimate economy wide discharges. Environ Sci Technol 29, 420 - 426.
    28. Lee, C.F., Lin, S.J., Lewis, C., 2001. Devising an integrated methodology for analyzing energy use and CO 2 emissions from Taiwan’s petrochemical industries. Journal of environmental management 63, 377-385.
    29. Leontief, W., 1970. Environmental repercussions and the economic structure: an input-output approach. The review of economics and statistics, 262-271.
    30. Leontief, W.W., 1986. Input-output economics. Oxford University Press on Demand.
    31. Li, L., Lei, Y., Pan, D., 2016. Study of CO2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment. Natural Hazards 81, 957-970.
    32. Lin, S.J., 2012. Co2 emission multiplier effect of Taiwan’s electricity sector by input output analysis. Aerosol and Air Quality Research.
    33. Lin, S.J., Chang, T.C., 1996. Decomposition of SO₂, NO x and CO₂ Emissions from Energy Use of Major Economic Sectors in Taiwan. The Energy Journal, 1-17.
    34. Lin, S.J., Chang, Y.F., 1997. Linkage effects and environmental impacts from oil consumption industries in Taiwan. Journal of environmental management 49, 393-411.
    35. Lin, S.J., Liu, C.H., Lewis, C., 2012. CO2 Emission Multiplier Effects of Taiwan’s Electricity Sector by Input-output Analysis. Aerosol Air Qual. Res 12, 180-190.
    36. Lin, S.J., Lu, I., Lewis, C., 2006. Identifying key factors and strategies for reducing industrial CO 2 emissions from a non-Kyoto protocol member's (Taiwan) perspective. Energy Policy 34, 1499-1507.
    37. Liou, G.H., 2011. CO2 Emission Characteristics and Power Generation Efficiency Analyses of the Electricity Sector in Taiwan, National Cheng Kung University.
    38. Lu, I., Lin, S.J., Lewis, C., 2007. Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea. Energy policy 35, 3226-3235.
    39. Mangmeechai, A., 2016. An economic input-output life cycle assessment of food transportation in Thailand. International Journal of Environmental Studies, 1-13.
    40. Manual, O.T., 2010. Petroleum Refining Process. United States Departement of Labor.
    41. Miettinen, P., Hämäläinen, R.P., 1997. How to benefit from decision analysis in environmental life cycle assessment (LCA). European Journal of operational research 102, 279-294.
    42. Miller, V.B., Landis, A.E., Schaefer, L.A., 2011. A benchmark for life cycle air emissions and life cycle impact assessment of hydrokinetic energy extraction using life cycle assessment. Renew Energ 36, 1040-1046.
    43. Muangthai, I., Lewis, C., Lin, S.J., 2014. Decoupling Effects and Decomposition Analysis of CO2 Emissions from Thailand’s Thermal Power Sector. Aerosol Air Qual. Res 14, 1929-1938.
    44. Muangthai, I., Lin, S.J., Lewis, C., 2016. Inter-Industry Linkages, Energy and CO 2 Multipliers of the Electric Power Industry in Thailand. Aerosol and Air Quality Research 16, 2033-2047.
    45. Penman, J., Gytarsky, M., Hiraishi, T., Irving, W., Krug, T., 2006. IPCC guidelines for national greenhouse gas inventories 2006.
    46. Speight, J.G., Ozum, B., 2001. Petroleum refining processes. CRC Press.
    47. Technology, A.f.T.A.a.A.o., 2012. Outlook Energy Indonesia 2011. BPPT, Jakarta, Indonesia.
    48. Technology, A.f.T.A.a.A.o., 2013. Outlook Energy Indonesia 2013. BPPT, Jakarta, Indonesia.
    49. Wang, H., Lei, Y., Bi, J., 2015. 13. Greenhouse gases reduction strategies for eco-industrial parks in China. International Perspectives on Industrial Ecology, 209.
    50. Wang, W., Liu, R., Zhang, M., Li, H., 2013. Decomposing the decoupling of energy-related CO 2 emissions and economic growth in Jiangsu Province. Energy for Sustainable Development 17, 62-71.
    51. Yuan, C., Liu, S., Xie, N., 2010. The impact on chinese economic growth and energy consumption of the Global Financial Crisis: An input–output analysis. Energy 35, 1805-1812.
    52. Zhang, Y.-J., Da, Y.-B., 2015. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renewable and Sustainable Energy Reviews 41, 1255-1266. 

    下載圖示 校內:2018-01-17公開
    校外:2018-01-17公開
    QR CODE