| 研究生: |
辜玟僡 Ku, Wen-Hui |
|---|---|
| 論文名稱: |
RRP6在乳癌中所扮演的角色 Role of RRP6 in breast cancer |
| 指導教授: |
陳百昇
Chen, Pai-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | RRP6 、mTOR 、乳癌 |
| 外文關鍵詞: | RRP6, mTOR, breast cancer |
| 相關次數: | 點閱:52 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞的品質監控系統包含DNA修復系統、監控RNA與維持蛋白質的恆定。先前的研究發現DNA修復系統及蛋白質的恆定在癌症中都有失調的情形,但RNA監控系統在癌症中所扮演的角色所知甚少。RNA exosome為RNA的品質管理系統,由核心次單元與酵素次單元組成,酵素次單元提供的核糖核酸酶的活性,可以將RNA降解或幫助形成成熟的RNA,其中表現最多的酵素次單元是RRP6,因此我們探討RRP6在乳癌中所扮演的角色。從Kaplan-Meier plotter 的分析中顯示EXO10RRP6表現越高對乳癌患者的預後較差,推測帶有RRP6的exosome complex可能在乳癌中帶來致癌的影響,為了了解RRP6可能調控哪些基因而造成細胞癌化,使用了Search-Based Exploration of Expression Compendium (SEEK)找出與RRP6在乳癌中共同表現的基因,發現mTOR與RRP6有最強的正相關, mTOR主要控制蛋白質的轉譯,由於mTOR使致癌基因高度表現,目前被視為乳癌中抗癌藥物重要標的。我們的結果顯示抑制RRP6表現降低mTOR的蛋白質,另外抑制了RNA exosome的核心次單元RRP4、RRP43、Csl4 和 EXOSC3也發現了mTOR蛋白質表現降低, 推測核心次單元可能參與RRP6調控mTOR的機制中。此外在抑制RRP6下,發現mTOR下游cyclin D1這個細胞生長指標下降,同時細胞的生長能力也減弱,當恢復mTOR表現,細胞的生長也回升。本研究顯示RRP6透過mTOR促進乳癌細胞生長並且提供了RNA監控系統與蛋白質轉譯間可能的交互作用。
Cellular strategies of quality control include DNA repair system, RNA surveillance machinery, and protein homeostasis. Previous studies have shown that DNA repair system and protein homeostasis are dysregulated in cancer, but the role of RNA surveillance system remains unclear. RNA exosome served as RNA quality control system consists of core subunits and enzymatic subunits. The enzymatic subunits execute the main function of RNA exosome in RNA degradation and maturation. Due to the predominance of RRP6 among three catalytic subunits in cell, we investigated the role of RRP6 in breast cancer. Analyzing by Kaplan-Meier plotter, patients with higher expression of EXO10RRP6 had poor prognosis, suggesting that RRP6-contained exosome complex mediates oncogenic effects in breast cancer. To identify RRP6-regulated genes, gene co-expression analysis was performed. In 5209 datasets, mechanistic target of rapamycin (mTOR) possesses the strongest correlation with RRP6 expression. mTOR, as a master translational control, is a drug target for breast cancer treatment. Our results indicated that knockdown of RRP6 decreases mTOR protein level. This effect was also observed upon knockdown of other core complex subunits such as RRP4, RRP43, Csl4 and EXOSC3, suggesting an exosome-dependent pathway is essential for mTOR regulation. Decreasing of mTOR downstream target, cyclin D1 and cell proliferation are through silencing of RRP6-mediated mTOR pathway. Taken together, our findings reveal the RRP6-mTOR axis in breast cancer cell proliferation and provide a possible crosstalk between RNA surveillance system and protein translation.
1. Ghoncheh, M., Z. Pournamdar, and H. Salehiniya, Incidence and Mortality and Epidemiology of Breast Cancer in the World. Asian Pac J Cancer Prev, 2016. 17(S3): p. 43-6.
2. L., S.R., M.K. D., and J. Ahmedin, Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 2018. 68(1): p. 7-30.
3. Narod, S.A., Breast cancer in young women. Nature Reviews Clinical Oncology, 2012. 9: p. 460.
4. Garrido-Castro, A.C. and E.P. Winer, Predicting breast cancer therapeutic response. Nature Medicine, 2018. 24(5): p. 535-537.
5. BYLER, S., et al., Genetic and Epigenetic Aspects of Breast Cancer Progression and Therapy. Anticancer Research, 2014. 34(3): p. 1071-1077.
6. Dunnwald, L.K., M.A. Rossing, and C.I. Li, Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Research, 2007. 9(1): p. R6.
7. Crowe, J.P., Jr., et al., Estrogen receptor determination and long term survival of patients with carcinoma of the breast. Surg Gynecol Obstet, 1991. 173(4): p. 273-8.
8. Aaltomaa, S., et al., Hormone receptors as prognostic factors in female breast cancer. Ann Med, 1991. 23(6): p. 643-8.
9. Maxmen, A., The hard facts. Nature, 2012. 485: p. S50.
10. Mitri, Z., T. Constantine, and R. O'Regan, The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy. Chemotherapy Research and Practice, 2012. 2012: p. 743193.
11. Patani, N., L.A. Martin, and M. Dowsett, Biomarkers for the clinical management of breast cancer: international perspective. Int J Cancer, 2013. 133(1): p. 1-13.
12. Lumachi, F., et al., Treatment of Estrogen Receptor-Positive Breast Cancer. Current Medicinal Chemistry, 2013. 20(5): p. 596-604.
13. Schafer, J.M., et al., A mechanism of drug resistance to tamoxifen in breast cancer. The Journal of Steroid Biochemistry and Molecular Biology, 2002. 83(1): p. 75-83.
14. Chang, M., Tamoxifen Resistance in Breast Cancer. Biomolecules & Therapeutics, 2012. 20(3): p. 256-267.
15. Jordan, V.C., Tamoxifen: Toxicities and Drug Resistance During the Treatment and Prevention of Breast Cancer. Annual Review of Pharmacology and Toxicology, 1995. 35(1): p. 195-211.
16. Lim, E., et al., Pushing estrogen receptor around in breast cancer. Endocrine-Related Cancer, 2016. 23(12): p. T227-T241.
17. Slamon, D.J., et al., Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. New England Journal of Medicine, 2001. 344(11): p. 783-792.
18. Slamon, D., et al., Adjuvant Trastuzumab in HER2-Positive Breast Cancer. New England Journal of Medicine, 2011. 365(14): p. 1273-1283.
19. Cortés, J., et al., HER2 and hormone receptor-positive breast cancer—blocking the right target. Nature Reviews Clinical Oncology, 2010. 8: p. 307.
20. Anders, C.K. and L.A. Carey, Biology, Metastatic Patterns, and Treatment of Patients with Triple-Negative Breast Cancer. Clinical breast cancer, 2009. 9(Suppl 2): p. S73-S81.
21. Wahba, H.A. and H.A. El-Hadaad, Current approaches in treatment of triple-negative breast cancer. Cancer Biology & Medicine, 2015. 12(2): p. 106-116.
22. Massihnia, D., et al., Triple negative breast cancer: shedding light onto the role of pi3k/akt/mtor pathway. Oncotarget, 2016. 7(37): p. 60712-60722.
23. Berman, A.Y., et al., ERRα regulates the growth of triple-negative breast cancer cells via S6K1-dependent mechanism. Signal Transduction And Targeted Therapy, 2017. 2: p. 17035.
24. Gordon, V. and S. Banerji, Molecular Pathways: PI3K Pathway Targets in Triple-Negative Breast Cancers. Clinical Cancer Research, 2013. 19(14): p. 3738-3744.
25. Chen, F., et al., Cellular Stress Responses: A Balancing Act. Molecular Cell, 2010. 40(2): p. 175.
26. Kiss, D.L. and E.D. Andrulis, Genome-wide analysis reveals distinct substrate specificities of Rrp6, Dis3, and core exosome subunits. RNA, 2010. 16(4): p. 781-91.
27. Schneider, C., et al., Transcriptome-wide Analysis of Exosome Targets. Molecular Cell, 2012. 48(3): p. 422-433.
28. Szczepinska, T., et al., DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts. Genome Research, 2015. 25(11): p. 1622-1633.
29. Chekanova, J.A., et al., Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell, 2007. 131(7): p. 1340-1353.
30. Gudipati, R.K., et al., Extensive Degradation of RNA Precursors by the Exosome in Wild-Type Cells. Molecular Cell, 2012. 48(3): p. 409-421.
31. Mitchell, P., et al., The Exosome: A Conserved Eukaryotic RNA Processing Complex Containing Multiple 3′→5′ Exoribonucleases. Cell, 1997. 91(4): p. 457-466.
32. Makino, D.L., et al., RNA degradation paths in a 12-subunit nuclear exosome complex. Nature, 2015. 524(7563): p. 54-8.
33. Kilchert, C., S. Wittmann, and L. Vasiljeva, The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol, 2016. 17(4): p. 227-39.
34. Liu, Q., J.C. Greimann, and C.D. Lima, Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell, 2006. 127(6): p. 1223-37.
35. Makino, D.L., M. Baumgartner, and E. Conti, Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature, 2013. 495(7439): p. 70-5.
36. Chlebowski, A., et al., RNA decay machines: The exosome. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2013. 1829(6): p. 552-560.
37. Januszyk, K. and C.D. Lima, The eukaryotic RNA exosome. Curr Opin Struct Biol, 2014. 24: p. 132-40.
38. Tomecki, R., et al., The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. The EMBO Journal, 2010. 29(14): p. 2342.
39. Houseley, J., J. LaCava, and D. Tollervey, RNA-quality control by the exosome. Nat Rev Mol Cell Biol, 2006. 7(7): p. 529-39.
40. Allmang, C., et al., Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Research, 2000. 28(8): p. 1684-1691.
41. Bousquet-Antonelli, C., C. Presutti, and D. Tollervey, Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell, 2000. 102(6): p. 765-775.
42. Hilleren, P., et al., Quality control of mRNA 3 '-end processing is linked to the nuclear exosome. Nature, 2001. 413(6855): p. 538-542.
43. LaCava, J., et al., RNA degradation by the exosome is promoted by a nuclear polyade nylation complex. Cell, 2005. 121(5): p. 713-724.
44. Wyers, F., et al., Cryptic Pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell, 2005. 121(5): p. 725-737.
45. Tran, H., et al., Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Molecular Cell, 2004. 13(1): p. 101-111.
46. Chen, C.Y., et al., AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell, 2001. 107(4): p. 451-464.
47. Mukherjee, D., et al., The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. Embo Journal, 2002. 21(1-2): p. 165-174.
48. Lemay, J.F., et al., The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nature Structural & Molecular Biology, 2014. 21(10): p. 919-926.
49. Skourti-Stathaki, K., N.J. Proudfoot, and N. Gromak, Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination. Molecular Cell, 2011. 42(6): p. 794-805.
50. Pefanis, E., et al., RNA Exosome-Regulated Long Non-Coding RNA Transcription Controls Super-Enhancer Activity. Cell. 161(4): p. 774-789.
51. Blasius, M., et al., A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response. Genes & Development, 2014. 28(18): p. 1977-1982.
52. Richard, P., S. Feng, and J.L. Manley, A SUMO-dependent interaction between Senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage. Genes & Development, 2013. 27(20): p. 2227-2232.
53. Pefanis, E. and U. Basu, RNA Exosome Regulates AID DNA Mutator Activity in the B Cell Genome. Advances in Immunology, Vol 127, 2015. 127: p. 257-308.
54. Basu, U., et al., The RNA Exosome Targets the AID Cytidine Deaminase to Both Strands of Transcribed Duplex DNA Substrates. Cell, 2011. 144(3): p. 353-363.
55. Zuo, Y. and M.P. Deutscher, Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Research, 2001. 29(5): p. 1017-1026.
56. Wasmuth, E.V., K. Januszyk, and C.D. Lima, Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature, 2014. 511(7510): p. 435-9.
57. Januszyk, K., Q. Liu, and C.D. Lima, Activities of human RRP6 and structure of the human RRP6 catalytic domain. RNA, 2011. 17(8): p. 1566-1577.
58. Stead, J.A., et al., The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein. Nucleic Acids Research, 2007. 35(16): p. 5556-5567.
59. Butler, J.S. and P. Mitchell, Rrp6, Rrp47 and Cofactors of the Nuclear Exosome, in RNA Exosome, T.H. Jensen, Editor. 2010, Springer US: New York, NY. p. 91-104.
60. Wasmuth, E.V. and C.D. Lima, The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Research, 2017. 45(2): p. 846-860.
61. Wasmuth, E.V. and C.D. Lima, Structure and activities of the eukaryotic RNA exosome. The Enzymes, 2012. 31: p. 53-75.
62. Delan-Forino, C., C. Schneider, and D. Tollervey, Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex. PLOS Genetics, 2017. 13(3): p. e1006699.
63. Callahan, K.P. and J.S. Butler, Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p. Nucleic Acids Research, 2008. 36(21): p. 6645-6655.
64. Graham, A.C., D.L. Kiss, and E.D. Andrulis, Core exosome-independent roles for Rrp6 in cell cycle progression. Mol Biol Cell, 2009. 20(8): p. 2242-53.
65. Laplante, M. and D.M. Sabatini, mTOR Signaling in Growth Control and Disease. Cell, 2012. 149(2): p. 274-293.
66. Saxton, R.A. and D.M. Sabatini, mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017. 168(6): p. 960-976.
67. Zoncu, R., A. Efeyan, and D.M. Sabatini, mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology, 2011. 12(1): p. 21-35.
68. Loewith, R. and M.N. Hall, Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control. Genetics, 2011. 189(4): p. 1177-1201.
69. Sabatini, D.M., et al., RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell, 1994. 78(1): p. 35-43.
70. Hay, N. and N. Sonenberg, Upstream and downstream of mTOR. Genes & Development, 2004. 18(16): p. 1926-1945.
71. Janus, A., T. Robak, and P. Smolewski, The mammalian target of the rapamycin (mTOR) kinase pathway: Its role in tumourigenesis and targeted antitumour therapy. Cellular & Molecular Biology Letters, 2005. 10(3): p. 479-498.
72. Yang, H.J., et al., mTOR kinase structure, mechanism and regulation. Nature, 2013. 497(7448): p. 217-+.
73. Veverka, V., et al., Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Oncogene, 2007. 27: p. 585.
74. Aylett, C.H.S., et al., Architecture of human mTOR complex 1. Science, 2016. 351(6268): p. 48.
75. Takahashi, T., et al., Carboxyl-terminal region conserved among phosphoinositide-kinase-related kinases is indispensable for mTOR function in vivo and in vitro (vol 5, pg 765, 2000). Genes to Cells, 2000. 5(11): p. 949-952.
76. Laplante, M. and D.M. Sabatini, mTOR signaling at a glance. Journal of Cell Science, 2009. 122(20): p. 3589.
77. Ma, X.M. and J. Blenis, Molecular mechanisms of mTOR-mediated translational control. Nature Reviews Molecular Cell Biology, 2009. 10: p. 307.
78. Loewith, R., et al., Two TOR Complexes, Only One of which Is Rapamycin Sensitive, Have Distinct Roles in Cell Growth Control. Molecular Cell, 2002. 10(3): p. 457-468.
79. Hara, K., et al., Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action. Cell, 2002. 110(2): p. 177-189.
80. Kim, D.-H., et al., mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery. Cell, 2002. 110(2): p. 163-175.
81. Nojima, H., et al., The Mammalian Target of Rapamycin (mTOR) Partner, Raptor, Binds the mTOR Substrates p70 S6 Kinase and 4E-BP1 through Their TOR Signaling (TOS) Motif. Journal of Biological Chemistry, 2003. 278(18): p. 15461-15464.
82. Dos, D.S., et al., Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton. Current Biology, 2004. 14(14): p. 1296-1302.
83. Kim, L.C., R.S. Cook, and J. Chen, mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene, 2017. 36(16): p. 2191-2201.
84. Fantus, D., et al., Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nature Reviews Nephrology, 2016. 12: p. 587.
85. Taylor, B.S., et al., Integrative Genomic Profiling of Human Prostate Cancer. Cancer Cell, 2010. 18(1): p. 11-22.
86. Hsieh, A.C., et al., The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature, 2012. 485: p. 55.
87. Woo, S.U., et al., Vertical inhibition of the PI3K/Akt/mTOR pathway is synergistic in breast cancer. Oncogenesis, 2017. 6: p. e385.
88. Sabatini, D.M., mTOR and cancer: insights into a complex relationship. Nature Reviews Cancer, 2006. 6: p. 729.
89. Rosenwald, I.B., et al., Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proceedings of the National Academy of Sciences, 1993. 90(13): p. 6175.
90. Rad, E., T.J. Murray, and R.A. Tee, Oncogenic Signalling through Mechanistic Target of Rapamycin (mTOR): A Driver of Metabolic Transformation and Cancer Progression. Cancers, 2018. 10(1).
91. Petroulakis, E., et al., mTOR signaling: implications for cancer and anticancer therapy. British Journal Of Cancer, 2005. 94: p. 195.
92. Hudes, G., et al., Temsirolimus, Interferon Alfa, or Both for Advanced Renal-Cell Carcinoma. New England Journal of Medicine, 2007. 356(22): p. 2271-2281.
93. Benjamin, D., et al., Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Reviews Drug Discovery, 2011. 10: p. 868.
94. Zhu, Q., et al., Targeted exploration and analysis of large cross-platform human transcriptomic compendia. Nat Methods, 2015. 12(3): p. 211-4, 3 p following 214.
95. Mignone, F., et al., Untranslated regions of mRNAs. Genome Biology, 2002. 3(3): p. reviews0004.1-reviews0004.10.
96. Kramer, M., et al., Alternative 5' untranslated regions are involved in expression regulation of human heme oxygenase-1. PLoS One, 2013. 8(10): p. e77224.
97. Leppek, K., R. Das, and M. Barna, Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nature Reviews Molecular Cell Biology, 2017. 19: p. 158.
98. Mayr, C., Regulation by 3′-Untranslated Regions. Annual Review of Genetics, 2017. 51(1): p. 171-194.
99. Truitt, M.L. and D. Ruggero, New frontiers in translational control of the cancer genome. Nat Rev Cancer, 2016. 16(5): p. 288-304.
100. Kammler, S., S. Lykke-Andersen, and T.H. Jensen, The RNA exosome component hRrp6 is a target for 5-fluorouracil in human cells. Mol Cancer Res, 2008. 6(6): p. 990-5.
101. Longley, D.B., D.P. Harkin, and P.G. Johnston, 5-Fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer, 2003. 3: p. 330.
102. Jordan, V.C., A Retrospective: On Clinical Studies with 5-Fluorouracil. Cancer Research, 2016. 76(4): p. 767-768.
103. Chapman, M.A., et al., Initial genome sequencing and analysis of multiple myeloma. Nature, 2011. 471: p. 467.
104. Lohr, Jens G., et al., Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy. Cancer Cell, 2014. 25(1): p. 91-101.
105. Robinson, S.R., et al., The 3' to 5' Exoribonuclease DIS3: From Structure and Mechanisms to Biological Functions and Role in Human Disease. Biomolecules, 2015. 5(3): p. 1515-1539.
106. Segalla, S., et al., The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA. Nucleic Acids Res, 2015. 43(10): p. 5182-93.
107. L.M., G.F., et al., Gene‐dosage dependent overexpression at the 13q amplicon identifies DIS3 as candidate oncogene in colorectal cancer progression. Genes, Chromosomes and Cancer, 2014. 53(4): p. 339-348.
108. Palmer, C.J., et al., Zfx facilitates tumorigenesis caused by activation of the Hedgehog pathway. Cancer research, 2014. 74(20): p. 5914-5924.
109. Zhang, L., et al., The exosome controls alternative splicing by mediating the gene expression and assembly of the spliceosome complex. Scientific Reports, 2015. 5: p. 13403.
110. Vivanco, I. and C.L. Sawyers, The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nature Reviews Cancer, 2002. 2: p. 489.
111. Fruman, D.A., et al., The PI3K Pathway in Human Disease. Cell, 2017. 170(4): p. 605-635.
112. Marques-Ramos, A., et al., Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA, 2017. 23(11): p. 1712-1728.
113. Merrick, W.C., Cap-dependent and cap-independent translation in eukaryotic systems. Gene, 2004. 332: p. 1-11.
114. Richter, J.D. and N. Sonenberg, Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature, 2005. 433: p. 477.
115. LaCava, J., et al., RNA Degradation by the Exosome Is Promoted by a Nuclear Polyadenylation Complex. Cell, 2005. 121(5): p. 713-724.
116. Lubas, M., et al., The Human Nuclear Exosome Targeting Complex Is Loaded onto Newly Synthesized RNA to Direct Early Ribonucleolysis. Cell Reports, 2015. 10(2): p. 178-192.