簡易檢索 / 詳目顯示

研究生: 李冠篁
Li, Kuan-Huang
論文名稱: 重新定義平板混合紊流中混合層之特徵長度
Re-evaluating mixing length in planar turbulent mixing layer
指導教授: 張克勤
Chang, Keh-Chin
王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 153
中文關鍵詞: 混合層混合長度峰態係數渦流分解
外文關鍵詞: Mixing layer, mixing length, flatness, vortex decomposition
相關次數: 點閱:109下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別以熱線測速法及粒子影像測速法量測二維平板混合紊流之流
    場速度分布。平板混合紊流場中有兩種不同類型之流場,分別為在流場離開分
    隔板末端後形成之剪力紊流與在兩外側之高、低速自由流,而剪力層隨著流向
    逐漸自發展區域至完全發展 (自我保持)區域。
    本研究以熱線測速法量測的速度時域 (temporal)資訊分析偏態係數與峰態
    係數在流場中分布的極值發生位置定義新的混合層範圍 (ySL 與ySH、yFL 與yFH)。
    峰態係數極值位置yFL、yFH 可視為剪力紊流最遠能影響的位置,其包含區域可
    視為真實受剪力紊流所影響之區域,因此可作為中央剪力紊流區與外圍均值紊
    流區之分界。須注意到進行高階統計量值如偏態係數、峰態係數之分析,須有
    較長的取樣時間以得到較多的取樣數量方可達到統計穩定值。
    藉由分析流場對稱軸位置的聯合概率密度傾斜角判定流場到達自我保持
    狀態之位置,對照以平均速度定義之兩位置間距離 (y0.05 與y0.95)及高階的統計
    量值ySL 與ySH、yFL 與yFH 包含區域呈現線性速率擴張之位置,ySL 與ySH、yFL
    與yFH 呈現線性速率擴張更適合作為判定流場到達自我保持狀態的充分且必要
    條件。
    以粒子影像測速法得到的速度平面分布經由空間差分得到流場的渦度及
    形變量分布,並且運用三重分解法區別在渦度項中受剪力紊流誘發的渦度及純
    粹剛體旋轉的渦度,以及在形變項中受剪力紊流誘發的形變及無旋形變,將剪
    力誘發渦度在各量測截面中量測誤差範圍 (80 s-1)以下之位置視為不受剪力紊
    流影響之區域 (高速側邊界為yωH,低速側邊界為yωL),在剪力誘發渦度區域呈
    現線性擴張速率後流場到達自我保持狀態。
    本研究分別比較以熱線測速法得到yFL 與yFH、y0.05 與y0.95,以及以粒子影
    像測速法得到yωL 與yωH、y0.05 與y0.95,訂定以峰態係數極值發生位置yFL、yFH寬度作為混合層之特徵長度lF,將lF 沿流場方向呈線性成長趨勢作為判定流場
    到達自我保持狀態之判斷依據。

    This thesis investigates the velocity distribution of two-dimensional planar turbulent mixing layer by hot-wire anemometry (HWA) and particle image velocimetry (PIV). A turbulent mixing layer is composed of two different flow types within its flow fields, namely a shear layer in the central region and two free streams in each outer high- and low-speed side. Shear layer is formed after the trailing edge of the splitting plate and developing through successively distinct regions, namely the near-field region and fully-developed (self-preserving) region.
    The cross-type hot-wire anemometry is capable of measuring the temporal velocity information and analysing profile distributions of skewness factor and flatness factor. The positions of flatness extreme values (yFL and yFH) are the farthest positions where the shear turbulence can reach. It can be viewed as the actual sectional range of shear turbulence. Hence the positions of flatness extreme values
    (yFL and yFH) are the interfaces of central shear turbulence and outer high- and low-speed homogeneous turbulence. Note that analysis of high-order turbulent statistics such as skewness or flatness needs more sampling data, in other words, longer sampling time to achieve statistical stationary.
    The linear growth rate of regions bounded by ySL and ySH, yFL and yFH are necessary and sufficient conditions and more appropriate for justifying the achievement of self-preserving state.
    Particles image velocimetry is used to measure planar velocity information of mixing layer. The spatial derivative of planar velocity distribution can be split into vorticity part and straining part. Furthermore, with new decomposition method, namely the triple decomposition method (TDM), the vorticity part is futher split into the shear-induced vorticity and rigid body rotation, while the straining part is split into the shear-induced strain and irrotational strain. The region which the shear-induced vorticity drops below 80 s-1 is defined as the interfaces shear and free-stream regions. After the width between the two interfaces between the shear layer and high-speed as well as low-speed free streams growths linearly, the flow reaches its self-preserving state.
    After comparing the width defined by positions with yFL, yFH and y0.05, y0.95 by HWA, and the interfaces of shear-induced vorticity (yωL and yωH) and y0.05, y0.95 by PIV, one concludes that the range bounded by extreme flatness factor values can be taken as the actual range of shear turbulence layer. The linear growth rate of lF along stream-wise direction can serve as a criterium to justify whether or not
    self-preserving state of the flow is achieved.

    第 一 章 緒論 ... 1 1-1 前言 ... 1 1-2 文獻回顧 ... 2 1-2-1 單向紊態混合層 ... 2 1-2-2 粒子影像測速法 ... 5 1-2-3 渦流分辨法(Triple Decomposition Method)... 15 1-3 研究背景與目標 ... 18 第 二 章 實驗設備與模型 ... 20 2-1 風洞及供氣系統 ... 20 2-2 測試段模型 ... 20 2-3 移動機構 ... 21 2-4 校正儀器 ... 21 2-4-1 壓力校正計 ... 21 2-4-2 壓力轉換計 ... 21 2-5 熱線測速儀系統 ... 22 2-5-1 熱線探針 ... 22 2-5-2 熱線測速儀主機 ... 22 2-5-3 熱線模組(熱線測速儀) ... 23 2-5-4 資料擷取系統 ... 23 2-5-5 StreamLine 應用軟體(StreamWare) ... 23 2-6 粒子影像測速儀系統 ... 24 2-6-1 高速攝影機 ... 24 2-6-2 雷射及光學鏡組 ... 24 2-6-3 追蹤粒子 ... 25 2-6-4 粒徑分析儀 ... 25 第 三 章 實驗方法與分析 ... 26 3-1 實驗方法 ... 26 3-1-1 熱線測速法 ... 26 3-1-2 粒子影像測速法 ... 27 3-2 實驗規劃與流程 ... 30 3-2-1 熱線測速法 ... 30 3-2-2 粒子影像測速法 ... 32 3-3 數據分析 ... 34 3-3-1 流場特徵長度及雷諾數 ... 34 3-3-2 混合層之紊流特性分析 ... 34 3-4 誤差分析 ... 40 第 四 章 結果與討論 ... 42 4-1 熱線測速儀量測結果 ... 42 4-2 粒子影像測速儀量測結果 ... 46 4-3 綜合討論 ... 53 第 五 章 結論 ... 56 參考文獻 ... 58

    [1] 林巧麗(2010),「平板混合紊流中以PIV技術量測雙粒徑兩相流研究」,國立成功大學航空太空研究所碩士論文。
    [2] Adrian, R. J. (1986), “Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry”, Applied Optics 1, pp. 3855-3858.
    [3] Adrian, R. J. (1991), “Particle-image techniques for experimental fluid mechanics”, Annual Review of Fluid Mechanics 23, pp. 261-304.
    [4] Adrian R. J., Yao C. S. (1985), “Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials”, Applied Optics 24, pp. 44–52.
    [5] Agüi, J. C, Jiménez J. (1987), “On the performance of particle tracking”, Journal of Fluid Mechanics 185, pp. 447–468.
    [6] Azim, A. M. and Islam, S. A. (2003), “Plane mixing layers from parallel and non-parallel merging of two stream”, Experiments in Fluids 34, pp. 220-226.
    [7] Batchlor, G. K. (1957), “Diffusion in free turbulent shear flows”, Journal of Fluid Mechanics 3, pp. 67-80.
    [8] Bell, J. H. and Mehta, R. D. (1990), “Development of two-stream mixing layer from tripped and untripped boundary layer”, AIAA Journal 28, pp. 2034-2042.
    [9] Birch, S. F. and Eggers, J. M. (2003), “A critical review of the experimental data for developed free turbulent shear layers”, NASA SP-321, pp. 11-40.
    [10] Bolinder, J. (2000), “Optimization of PIV in flows with strong velocity gradients”, PDF publication available at internet site of Lavision (www. lavision. de).
    [11] Boillot, A., Prasad, A.K. (1996), “Optimization procedure for pulse separation in cross-correlation PIV”, Experiments in Fluids 21(2), pp. 87-93.
    [12] Bradbury, L. J. S. (1965), “The structure of a self-preserving turbulent plane jet”, Journal of Fluid Mechanics 23, pp. 31-64.
    [13] Bradshaw, P. (1966), “The effect of initial conditions on the development of a free shear layer”, Journal of Fluid Mechanics 26, pp. 225-236.
    [14] Chang, K. C. and Li, C. T. (2011), “Redefining mixing length in turbulent mixing layer in terms of shear-induced vorticity”, Journal of Fluid Science and Technology 4, pp. 662-673.
    [15] Dimotakis, P. E. (2000), “The mixing transition in turbulent flows”, Journal of Fluid Mechanics 409, pp. 69-98.
    [16] Druault, P., Deville, J. and Bonnet, J. (2005), “Experimental 3D analysis of the large scale behaviour of a plane turbulent mixing layer”, Flow, Turbulence and Combustion 74, pp. 207-233.
    [17] Dziomba, B. and Fielder, H. E. (1985), “Effect of initial conditions on two-dimensional free shear layer”, Journal of Fluid Mechanics 152, pp. 419-422.
    [18] Gharib, M., Hernan, M. A., Yavrouian, A.H., Sarohia, V. (1985), “ Flow velocity measurement by image processing of optically activated tracers”, AIAA Paper No. 85-0172.
    [19] Glass, M. and Kennedy, I. M. (1977), “An improved method for high temperature laser Doppler velocimetry”, Combustion and Flame 29, pp. 333-335.
    [20] Hart, D. P. (2000), “PIV error correction”, Experiments in Fluids 29, pp. 13-22.
    [21] Hecht, E., Zajac, A. (2001), Optics, Massachusetts: Addison-Wesley Pub. Company.
    [22] Huang, H.T., Fiedler, H.E., Wang, J.J. (1993), “Limitation and improvement of PIV. Part I: Limitation of conventional techniques due to deformation of particle image patterns”, Experiments in Fluids 15, pp. 168-174.
    [23] Hussian, A. and Zedan, M. F. (1978), “Effect of the initial condition on the axisymmetric free shear layer: Effect of the initial momentum thickness”, Physics of Fluids 21, pp. 1100-1112.
    [24] Jambunathan K, Ju X.Y., Dobbins B.N., Ashcroft-Frost, S. (1995), “An improved cross correlation technique for particle image velocimetry”, Measurement science and technology 6, pp. 507–514.
    [25] Keane, R. D., Adrian, R. J. (1990), “Optimization of particle image velocimeters. I. Double pulsed systems”, Measurement and Science and Technology 1, pp. 1202-1215.
    [26] Keane, R. D., Adrian, R. J. (1992), “Theory of cross-correlation analysis of PIV images”, Applied Scientific Research 49, pp.191-215.
    [27] Keane R.D., Adrian R.J., Zhang Y (1995), “Super-resolution particle image velocimetry”, Measurement science and technology 6, pp. 754–768.
    [28] Kolář, V. (2004), “2D Velocity-Field Analysis Using Triple Decomposition of Motion”, 15th Australasian Fluid Mechanics Conference, December.
    [29] Kolář, V. (2007), “Vortex identification: New requirements and limitations”, Journal of Heat and Fluid Flow 28, pp. 638-652.
    [30] Le, H., Moin, P., Kim, J. (1997), “Direct numerical simulation of turbulent flow over a backward-facing step”, Journal of Fluid Mechanics 330, pp. 349-374.
    [31] Li, C. T. (2009), “Investigation of two-phase turbulent planar mixing layer using PIV technique”, Dissertation for Doctor of Philosophy, National Cheng Kung University, Tainan, Taiwan.
    [32] Mehta, R. D. and Westphal, R.V. (1986), “Near-field turbulence properties of single- and two-stream plane mixing layers”, Experiments in Fluids 4, pp. 257-266.
    [33] Melling, A. (1997), “Tracer particles and seeding for particle image velocimetry”, Measurement science and technology 8, pp. 1406-1416
    [34] Miau, J. J. and Karlsson, S. K. F. (1987), “Flow structures in the developing region of a symmetric wake and an unsymmetric wake”, Physics of Fluids 30, pp. 2389-2399.
    [35] Oster, D. and Wygnanski, I. (1982), “The forced mixing layer between parallel streams”, Journal of Fluid Mechanics 123, pp. 91-130.
    [36] Parthasarathy, R.N., Faeth, G.M. (1990), “Turbulence modulation in homogeneous dilute particle-laden flows”, Journal of Fluid Mechanics 220, pp. 485-514.
    [37] Theofanous, T.G., Sullivan, J. (1982), “Turbulence in two-phase dispersed flows”, Journal of Fluid Mechanics 116, pp. 343-362.
    [38] Utami, T., Blackwelder, R. F., Ueno, T. (1991), “A cross-correlation technique for velocity-field extraction from particulate visualization”, Experiments in Fluids 10, pp. 213-223.
    [39] Westerweel, J. (1993), Digital Particle Image Velocimetry: Theory and Application, Delft, The Netherlands: Delft University Press .
    [40] Westerweel, J. (1994), “Efficient detection of spurious vectors in particle image velocimetry data sets”, Experiments in Fluids 16, pp. 236-247.
    [41] Westerweel, J. (1997), “Fundamentals of digital particle image velocimetry”, Measurement science and technology 8, pp. 1379-1392.
    [42] Westerweel, J. and Scarano, F. (2005), “Universal outlier detection for PIV data”, Experiments in Fluids 39, pp. 1096-1100.
    [43] Willert, C. E., Gharib, M. (1991), “Digital particle image velocimetry”, Experiments in Fluids 10, pp. 181-193.
    [44] Popovich, A. T., Hummel, R. L. (1967), “A new method for non-disturbing turbulent flow measurements very close to a wall”, Chemical Engineering Science 22, pp. 21-25.
    [45] Raffel, M., Willert, C. E., Wereley, S. T., Kompenhans, J. (2007), Particle Image Velocimetry: A Practical Guide, Springer.
    [46] Ricka, J. (1987), “Photo bleaching velocimetry”, Experiment in Fluids 5, pp. 381-384.
    [47] Roger, M. M. and Moser, R. D. (1994), “Direct simulation of a self-similar turbulent mixing layer”, Physics of Fluids 6, pp.903-923.
    [48] Scarano, F. (2002), “Iterative image deformation methods in PIV”, Measurement Science and Technology 13, pp. R15-R19.
    [49] Townscend, A. A. (1976), The structure of turbulent shear flow, London, Cambridge.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE