| 研究生: |
歐雅文 Ou, Ya-Wen |
|---|---|
| 論文名稱: |
毫米波CMOS次諧波降頻混頻器與低相位變化之可變增益放大器射頻晶片之研製 Design of Millimeter-wave CMOS Sub-Harmonic Mixer and Low-Phase-Variation Variable Gain Amplifier |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 次諧波降頻混頻器 、低相位變化之可變增益放大器 |
| 外文關鍵詞: | sub-harmonic mixer, low-phase-variation variable gain amplifier |
| 相關次數: | 點閱:93 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研製毫米波CMOS次諧波降頻混頻器與低相位變化之可變增益放大器。整合壓控振盪器之60-GHz CMOS次諧波降頻混頻器採用TSMC CMOS 90-nm製程,混頻器主要以串接LO之bottom-LO架構,再加上被動及主動平衡器、緩衝放大器及並聯λ/4開路傳輸線。24-GHz及60-GHz低相位變化之可變增益放大器分別採用TSMC CMOS 0.18 μm及90 nm製程。24-GHz CMOS低相位變化之可變增益放大器,改變疊接架構放大器之等效輸出阻抗及轉導值,並使用基極浮接技術達到相位的平坦;而24-GHz CMOS線性增益調控及低相位變化之可變增益放大器,改變疊接架構放大器之等效輸出阻抗及回授之回授量,基極浮接技術及可變電容達到相位補償;60-GHz CMOS低相位變化之可變增益放大器,串接兩級增益控制級,利用兩級不同趨勢之頻率響應,達到相位補償。晶片皆採用fully on-wafer的量測方式。
This thesis presents the design of a 60-GHz millimeter-wave CMOS sub-harmonic mixer and 24-/60-GHz low-phase-variation variable gain amplifiers (VGAs). The designed RFICs are fabricated with TSMC CMOS 90 nm and TSMC CMOS 0.18 μm standard process, rerspectively. The 60-GHz CMOS sub-harmonic mixer with integrated VCO is mainly composed of the leveled-bottom-LO structure, passive and active baluns, and buffer amplifier. The first design of VGA is a 24-GHz CMOS low-phase-variation variable gain amplifier which uses the equivalent output impedance and transconductance (gm) by changing the cascode amplifier structure. The second 24-GHz VGA with a low-phase-variation and linear-in-dB gain control range is achieved with the adjusted equivalent output impedance and amount of feedback by changing cascode amplifier structure. The body-floating technique is also used to reduce phase variation versus gain control in the above VGA design. The 60-GHz VGA design cascades two gain control stages with different phase-change tendency to achieve the low phase variation.
[1]郭信智,應用於60-GHz CMOS毫米波射頻接收機前端電路之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十七年。
[2]Celeno Press Kit / ducting [online]. Available : http://www.celeno.com/press/kit.aspx.
[3]RF atmospheric absorption / ducting [Online]. Available : http://www.tscm.com/rf_absor.pdf.
[4]M. Marcus and B. Pattan, “Millimeter wave propagation; spectrum management implications,” IEEE Microw. Mag., vol. 6, no. 2, pp. 54-62, Oct. 2005.
[5]J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1-6.
[6]IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15.
[7]M. Breakstone, M. McDonald, Car-following:a historical review, transportation research part F2, 1999, pp.181-196.
[8]蔡凱翔,毫米波寬頻、雙頻帶及極化分集CMOS射頻晶片嵌入式天線之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十九年。
[9]S.-G. Lee and J.-K. Choi, “Current-reuse bleeding mixer,” IEEE Electron. Lett., vol. 36, pp. 696-697, Apr. 2000.
[10]H. Hwang, S. Oh and H. Kim, “A design of current reused CMOS mixer with CMFB for direct conversion receiver,” in Asia-Pacific Microw. Conf., Dec. 2007, pp.1-4.
[11]T. H. Wu, S. C. Tseng, C. C. Meng and G. W. Huang, “GaInP/GaAs HBT sub-harmonic gilbert mixers using stacked-LO and leveled-LO topologies,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 880-889, May. 2007.
[12]歐振宇,24-GHz與60-GHz CMOS收發開關與次諧波及摺疊混頻器毫米波射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年。
[13]王鴻耀,UWB低電壓低雜訊放大器及摺疊式與次諧波是混頻器之研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。
[14]R. C.-H. Li, “RF Circuit Design,” Hoboken, NJ: Wiley, 2009.
[15]B. Razavi, “RF Microelectronic,” NJ, USA: Prentice-Hall PTR, 1998.
[16]張盛富, 張嘉展, “無線通訊射頻晶片模組設計-射頻系統篇,” 全華科技, 2009。
[17]C. Toumazou, G. Moschytz, B. Gilbert, and G. Kathiresan, “Trade-Offs in Analog Circuit Design,” Kluwer Academic Publishers, 2002.
[18]J. Park, C.-H. Lee, B.-H. Kim, and B. Kim, “Design and analysis of low flicker-noise CMOS mixers for direct-conversion receiver,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4372-4380, Dec. 2006.
[19]H. Darabi and J. Chiu, “A noise cancellation technique in active RF-CMOS mixers,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2628−2632, Dec. 2005.
[20]J.-X. Liu. C.-Y. Hsu, H.-R. Chuang, and C.-Y. Chen, “A 60-GHz Millimeter-wave CMOS Marchand Balun,” in IEEE RFIC Symp., June 2007, pp.445-448.
[21]J.-J. Lee, D.-Y. Jung, K.-C. Eun, I.-Y. Oh and C.-S. Park, “A low power CMOS single-chip receiver and system-on-package for 60 GHz mobile applications”, in IEEE RFIT, Jan. 2009, pp. 24-27.
[22]S. Emami, C. H. Doan, A. M. Niknejad, R. W. Brodersen,” A highly integrated 60 GHz CMOS front-end receiver,” in IEEE Int. Solid-State Circuits Conf., Feb. 2007, pp. 190-191.
[23]P. Sen, S. Sarkar, D. Dawn, S. Pinel, and Joy Laskar, “Integrated VCO with up/down converter for Si-Based 60 GHz WPAN applications, ” IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 2, pp. 139-141, Feb. 2008.
[24]R.S.P. Tam ”CMOS Variable gain amplifier”, term paper, University of Toronto, 2002.
[25]F. Ellinger, U. Jörges, U. Mayer, and R. Eickhoff, “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1885-1894, Aug. 2009.
[26]F. Ellinger, U. Lott, and W. Bächtold, “An antenna diversity MMIC vector modulator for HIPERLAN with low power consumption and calibration capability,” IEEE Trans. Microw. Theory Tech., vol. 49, no.5, pp. 964-969, May 2001.
[27]H. Hayashi and M. Muraguchi, “An MMIC variable-gain amplifier using a cascode-connected FET with constant phase deviation,” IEICE Trans. Electron., vol. E81-C, no. 1, pp. 70-77, Jan. 1998.
[28]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[29]K. L. Feng, “Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1999 pp. 224 -225.
[30]J. Xiao, I. Mehr and J. Silva-Martinez ”A high dynamic range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuit, vol. 42, pp. 292-301, Feb. 2007.
[31]C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai, H. Wang, ‘A 71–76 GHz CMOS variable gain amplifier using current steering technique,’ in IEEE RFIC Symp., June 2008, pp. 609-612.
[32]F. Ellinger and H. Jäckel, “Low-Cost BiCMOS variable gain LNA at Ku-band with ultra-low power consumption”, IEEE Trans. on Microw. Theory and Tech., Vol.52, pp. 702-708, Feb. 2004.
[33]S. Mayer, F. Ellinger, R. Eickhoff, "Analysis and reduction of phase variations of variable gain amplifiers verified by CMOS implementation at C-band," IET Circuits Devices Syst., Vol. 4, Iss. 5, pp. 433-439, Feb. 2010.
[34]F. Ellinger, U. Jörges, U. Mayer, and R. Eickhoff, “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1885-1894, Aug. 2009.
[35]張盛富, 張嘉展, “無線通訊射頻晶片模組設計-射頻晶片篇,” 全華科技, 2008。
[36]H. W. Chiu and S. S. Lu “A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption” IEEE Trans. Microw. Theory Tech, vol. 53, no. 3, pp. 813-824, Mar. 2005.
[37]B. Sewiolo, G. Fischer, and R. Weigel, “A 30 GHz variable gain amplifier with high output voltage swing for ultra-wideband radar,” IEEE Microw. Wireless Compon. Lett., vol. 19, no.9, pp. 590–592, Sep. 2009.
[38]F.-J. Huang and K. O, “A 0.5 μm CMOS T/R switch for 900 MHz wireless applications,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 486-492, Mar. 2001.
[39]C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai, H. Wang, ‘A 71–76 GHz CMOS variable gain amplifier using current steering technique,’ in IEEE RFIC Symp., pp. 609–612, June 2008.
[40]S. Hauptmann, F. Ellinger, F. Kordoerfer, C. Scheytt, "V-band variable gain amplifier applying efficient design methodology with scalable transmission lines," IET Circuits Devices Syst., Vol. 4, Iss. 1, pp. 24-29, 2010.
[41]L. Noor and A. Anpalagan, “Direct conversion receiver for radio communication systems,” IEEE Potentials, vol. 24, no. 5, pp. 32-35, Dec. 2005.
[42]R. Hartley, “Modulation system,” U.S. Patent 1,666,206, Apr. 1928.
[43]C. S. Wang, J. W. Huang, K. D. Chu, C. K. Wang, “A 0.13μm CMOS fully differential receiver with on-chip baluns for 60 GHz broadband wireless communications,” in IEEE Custom Integr. Circuits Conf. (CICC), Sept. 2008, pp. 479-485.
[44]S. Zhou and M. C. F. Chang, “A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1084-1093, May. 2005.
[45]RF course advanced IC for communication / ducting [Online]. Available :
http://rfic.eecs.berkeley.edu/~niknejad/ee242/lectures.html
[46]User’s guide: noise figure analyzers NFA series / ducting [Online]. Available : http://www.trs-rentelco.com/Manual/AT_N8975A_Manual.pdf
[47]Agilent Application Note 57-2, “Noise figure measurement accuracy the Y-factor method”, 2010.