簡易檢索 / 詳目顯示

研究生: 歐雅文
Ou, Ya-Wen
論文名稱: 毫米波CMOS次諧波降頻混頻器與低相位變化之可變增益放大器射頻晶片之研製
Design of Millimeter-wave CMOS Sub-Harmonic Mixer and Low-Phase-Variation Variable Gain Amplifier
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 111
中文關鍵詞: 次諧波降頻混頻器低相位變化之可變增益放大器
外文關鍵詞: sub-harmonic mixer, low-phase-variation variable gain amplifier
相關次數: 點閱:93下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製毫米波CMOS次諧波降頻混頻器與低相位變化之可變增益放大器。整合壓控振盪器之60-GHz CMOS次諧波降頻混頻器採用TSMC CMOS 90-nm製程,混頻器主要以串接LO之bottom-LO架構,再加上被動及主動平衡器、緩衝放大器及並聯λ/4開路傳輸線。24-GHz及60-GHz低相位變化之可變增益放大器分別採用TSMC CMOS 0.18 μm及90 nm製程。24-GHz CMOS低相位變化之可變增益放大器,改變疊接架構放大器之等效輸出阻抗及轉導值,並使用基極浮接技術達到相位的平坦;而24-GHz CMOS線性增益調控及低相位變化之可變增益放大器,改變疊接架構放大器之等效輸出阻抗及回授之回授量,基極浮接技術及可變電容達到相位補償;60-GHz CMOS低相位變化之可變增益放大器,串接兩級增益控制級,利用兩級不同趨勢之頻率響應,達到相位補償。晶片皆採用fully on-wafer的量測方式。

    This thesis presents the design of a 60-GHz millimeter-wave CMOS sub-harmonic mixer and 24-/60-GHz low-phase-variation variable gain amplifiers (VGAs). The designed RFICs are fabricated with TSMC CMOS 90 nm and TSMC CMOS 0.18 μm standard process, rerspectively. The 60-GHz CMOS sub-harmonic mixer with integrated VCO is mainly composed of the leveled-bottom-LO structure, passive and active baluns, and buffer amplifier. The first design of VGA is a 24-GHz CMOS low-phase-variation variable gain amplifier which uses the equivalent output impedance and transconductance (gm) by changing the cascode amplifier structure. The second 24-GHz VGA with a low-phase-variation and linear-in-dB gain control range is achieved with the adjusted equivalent output impedance and amount of feedback by changing cascode amplifier structure. The body-floating technique is also used to reduce phase variation versus gain control in the above VGA design. The 60-GHz VGA design cascades two gain control stages with different phase-change tendency to achieve the low phase variation.

    第一章 緒論 1 1.1 研究動機與背景 1 1.2 毫米波簡介 2 1.3 60-GHz短距離無線通訊系統簡介 3 1.4 毫米波汽車防撞雷達系統簡介 8 1.5 論文架構 10 第二章 60-GHz CMOS 次諧波降頻混頻器 11 2.1 主動混頻器架構 11 2.1.1 吉伯特混頻器 12 2.1.2 摺疊式和基板驅動混頻器 13 2.1.3 次諧波混頻器 14 2.2 混頻器重要參數設計 17 2.3 60-GHz CMOS次諧波降頻混頻器 27 2.3.1 電路架構考量 27 2.3.2 電路設計考量 28 2.3.3 完整電路設計與考量 31 2.4 模擬與量測結果 34 2.5 結果與討論 37 第三章 24-GHz CMOS 低相位變化之可變增益放大器 39 3.1 可變增益放大器簡介 39 3.2 可變增益放大器之架構及重要參數設計 41 3.2.1 可變增益放大器架構 41 3.2.2 可變增益放大器重要參數設計 44 3.3 24-GHz CMOS低相位變化之可變增益放大器 52 3.3.1 電路架構考量 52 3.3.2 電路設計考量 53 3.3.3 完整電路設計與考量 57 3.3.4 模擬與量測結果 59 3.3.5 結果與討論 63 3.4 24-GHz CMOS線性調控增益及低相位變化之可變增益放大器 67 3.4.1 電路架構考量 67 3.4.2 電路設計考量 68 3.4.3 完整電路設計與考量 69 3.4.4 模擬與量測結果 71 3.4.5 結果與討論 75 第四章 60-GHz CMOS 低相位變化之可變增益放大器 79 4.1 電路架構考量 79 4.2 電路設計考量 80 4.3 完整電路設計與考量 83 4.4 模擬與量測結果 85 4.5 結果與討論 88 第五章 結論 91 參考文獻 93 附錄A 毫米波射頻前端接收機系統簡介 97 A.1 射頻前端接收機之架構分析 97 A.2 射頻前端接收機規劃之介紹 105 A.3 相位陣列天線系統規劃之介紹 106 附錄B 混頻器雜訊指數定義及量測之簡介 107

    [1]郭信智,應用於60-GHz CMOS毫米波射頻接收機前端電路之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十七年。
    [2]Celeno Press Kit / ducting [online]. Available : http://www.celeno.com/press/kit.aspx.
    [3]RF atmospheric absorption / ducting [Online]. Available : http://www.tscm.com/rf_absor.pdf.
    [4]M. Marcus and B. Pattan, “Millimeter wave propagation; spectrum management implications,” IEEE Microw. Mag., vol. 6, no. 2, pp. 54-62, Oct. 2005.
    [5]J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1-6.
    [6]IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15.
    [7]M. Breakstone, M. McDonald, Car-following:a historical review, transportation research part F2, 1999, pp.181-196.
    [8]蔡凱翔,毫米波寬頻、雙頻帶及極化分集CMOS射頻晶片嵌入式天線之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十九年。
    [9]S.-G. Lee and J.-K. Choi, “Current-reuse bleeding mixer,” IEEE Electron. Lett., vol. 36, pp. 696-697, Apr. 2000.
    [10]H. Hwang, S. Oh and H. Kim, “A design of current reused CMOS mixer with CMFB for direct conversion receiver,” in Asia-Pacific Microw. Conf., Dec. 2007, pp.1-4.
    [11]T. H. Wu, S. C. Tseng, C. C. Meng and G. W. Huang, “GaInP/GaAs HBT sub-harmonic gilbert mixers using stacked-LO and leveled-LO topologies,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 880-889, May. 2007.
    [12]歐振宇,24-GHz與60-GHz CMOS收發開關與次諧波及摺疊混頻器毫米波射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年。
    [13]王鴻耀,UWB低電壓低雜訊放大器及摺疊式與次諧波是混頻器之研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。
    [14]R. C.-H. Li, “RF Circuit Design,” Hoboken, NJ: Wiley, 2009.
    [15]B. Razavi, “RF Microelectronic,” NJ, USA: Prentice-Hall PTR, 1998.
    [16]張盛富, 張嘉展, “無線通訊射頻晶片模組設計-射頻系統篇,” 全華科技, 2009。
    [17]C. Toumazou, G. Moschytz, B. Gilbert, and G. Kathiresan, “Trade-Offs in Analog Circuit Design,” Kluwer Academic Publishers, 2002.
    [18]J. Park, C.-H. Lee, B.-H. Kim, and B. Kim, “Design and analysis of low flicker-noise CMOS mixers for direct-conversion receiver,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4372-4380, Dec. 2006.
    [19]H. Darabi and J. Chiu, “A noise cancellation technique in active RF-CMOS mixers,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2628−2632, Dec. 2005.
    [20]J.-X. Liu. C.-Y. Hsu, H.-R. Chuang, and C.-Y. Chen, “A 60-GHz Millimeter-wave CMOS Marchand Balun,” in IEEE RFIC Symp., June 2007, pp.445-448.
    [21]J.-J. Lee, D.-Y. Jung, K.-C. Eun, I.-Y. Oh and C.-S. Park, “A low power CMOS single-chip receiver and system-on-package for 60 GHz mobile applications”, in IEEE RFIT, Jan. 2009, pp. 24-27.
    [22]S. Emami, C. H. Doan, A. M. Niknejad, R. W. Brodersen,” A highly integrated 60 GHz CMOS front-end receiver,” in IEEE Int. Solid-State Circuits Conf., Feb. 2007, pp. 190-191.
    [23]P. Sen, S. Sarkar, D. Dawn, S. Pinel, and Joy Laskar, “Integrated VCO with up/down converter for Si-Based 60 GHz WPAN applications, ” IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 2, pp. 139-141, Feb. 2008.
    [24]R.S.P. Tam ”CMOS Variable gain amplifier”, term paper, University of Toronto, 2002.
    [25]F. Ellinger, U. Jörges, U. Mayer, and R. Eickhoff, “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1885-1894, Aug. 2009.
    [26]F. Ellinger, U. Lott, and W. Bächtold, “An antenna diversity MMIC vector modulator for HIPERLAN with low power consumption and calibration capability,” IEEE Trans. Microw. Theory Tech., vol. 49, no.5, pp. 964-969, May 2001.
    [27]H. Hayashi and M. Muraguchi, “An MMIC variable-gain amplifier using a cascode-connected FET with constant phase deviation,” IEICE Trans. Electron., vol. E81-C, no. 1, pp. 70-77, Jan. 1998.
    [28]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
    [29]K. L. Feng, “Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1999 pp. 224 -225.
    [30]J. Xiao, I. Mehr and J. Silva-Martinez ”A high dynamic range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuit, vol. 42, pp. 292-301, Feb. 2007.
    [31]C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai, H. Wang, ‘A 71–76 GHz CMOS variable gain amplifier using current steering technique,’ in IEEE RFIC Symp., June 2008, pp. 609-612.
    [32]F. Ellinger and H. Jäckel, “Low-Cost BiCMOS variable gain LNA at Ku-band with ultra-low power consumption”, IEEE Trans. on Microw. Theory and Tech., Vol.52, pp. 702-708, Feb. 2004.
    [33]S. Mayer, F. Ellinger, R. Eickhoff, "Analysis and reduction of phase variations of variable gain amplifiers verified by CMOS implementation at C-band," IET Circuits Devices Syst., Vol. 4, Iss. 5, pp. 433-439, Feb. 2010.
    [34]F. Ellinger, U. Jörges, U. Mayer, and R. Eickhoff, “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1885-1894, Aug. 2009.
    [35]張盛富, 張嘉展, “無線通訊射頻晶片模組設計-射頻晶片篇,” 全華科技, 2008。
    [36]H. W. Chiu and S. S. Lu “A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption” IEEE Trans. Microw. Theory Tech, vol. 53, no. 3, pp. 813-824, Mar. 2005.
    [37]B. Sewiolo, G. Fischer, and R. Weigel, “A 30 GHz variable gain amplifier with high output voltage swing for ultra-wideband radar,” IEEE Microw. Wireless Compon. Lett., vol. 19, no.9, pp. 590–592, Sep. 2009.
    [38]F.-J. Huang and K. O, “A 0.5 μm CMOS T/R switch for 900 MHz wireless applications,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 486-492, Mar. 2001.
    [39]C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai, H. Wang, ‘A 71–76 GHz CMOS variable gain amplifier using current steering technique,’ in IEEE RFIC Symp., pp. 609–612, June 2008.
    [40]S. Hauptmann, F. Ellinger, F. Kordoerfer, C. Scheytt, "V-band variable gain amplifier applying efficient design methodology with scalable transmission lines," IET Circuits Devices Syst., Vol. 4, Iss. 1, pp. 24-29, 2010.
    [41]L. Noor and A. Anpalagan, “Direct conversion receiver for radio communication systems,” IEEE Potentials, vol. 24, no. 5, pp. 32-35, Dec. 2005.
    [42]R. Hartley, “Modulation system,” U.S. Patent 1,666,206, Apr. 1928.
    [43]C. S. Wang, J. W. Huang, K. D. Chu, C. K. Wang, “A 0.13μm CMOS fully differential receiver with on-chip baluns for 60 GHz broadband wireless communications,” in IEEE Custom Integr. Circuits Conf. (CICC), Sept. 2008, pp. 479-485.
    [44]S. Zhou and M. C. F. Chang, “A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1084-1093, May. 2005.
    [45]RF course advanced IC for communication / ducting [Online]. Available :
    http://rfic.eecs.berkeley.edu/~niknejad/ee242/lectures.html
    [46]User’s guide: noise figure analyzers NFA series / ducting [Online]. Available : http://www.trs-rentelco.com/Manual/AT_N8975A_Manual.pdf
    [47]Agilent Application Note 57-2, “Noise figure measurement accuracy the Y-factor method”, 2010.

    下載圖示 校內:2016-08-31公開
    校外:2016-08-31公開
    QR CODE