簡易檢索 / 詳目顯示

研究生: 洪丕振
Hung, Pei-Chen
論文名稱: 水深-流量公式適用性之探討 -以八掌溪軍輝站及義竹站為例
The Study of Depth-Discharge Formulas Applied to the Pa-Chang Chi Chun-Huei and Yi-Chu Stations
指導教授: 蔡長泰
TSAI, CHANG-TAI
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系碩士在職專班
Department of Hydraulic & Ocean Engineering (on the job class)
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 76
中文關鍵詞: 八掌溪
外文關鍵詞: Pa-Chang Chi
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以八掌溪軍輝站、義竹站為研究對象,取1972年至1981年實測之較大流量各項水力性質,應用應用非線性阻力關係式法、Einstein and Barbarossa法及Engelund法等平均流速公式,分析觀測資料之福祿數、D/ds及能量坡降之關係,探討適合於該水文站河段之公式。軍輝站屬礫石質底床,觀測範圍內, 值大多在0.06以下,不會有河床形態發生,經各種流速公式之比較分析,軍輝站之平均流速公式以Einstein and Barbarossa公式為宜。義竹站為砂質底床,可有河床形態發生,因而Einstein and Barbarossa法及Engelund法均可適用,且Engelund公式應可顯示流速與水深關係間不連續變化;另由計算繪圖可看出各觀測流量,其能量坡度分佈甚廣,不易明確決定,應建立輔助水位站,以量測較為可靠之水面坡度。

      This paper is a study based on two stations at the Pa-Chang Chi called Chun Huei Station and Yi Chu Station. This study consists of taking data from the period of 1972-1981, using the hydraulic characteristic of the largest discharge of water. The methods used were nonlinear resistance relationship approach, Einstein and Barbarossa method, and Engelund method. The average velocity of these methods is used to analyze the data looking at the relationship of Froude number、D/dsand the energy slope. This study is attempts to find the suitable formula for this river section. The bed of river of Chun Huei Station consists of gravel. This study shows most of the value of are under 0.06 which means the bed form will not exist. After analyzing the calculation’s graphics, the average velocity formula for the Chun Huei Station are Einstein and Barbarossa method found to be more suitable. The bed of river of Yi Chu Station consists of sand. Therefore, the bed form will exist. The Einstein and Barbaroosa and Engelund Formula are suitable methods to use. The Engelund formula shows the difference of the irregular velocity and depth of the river. The calculation’s graphics show the range of energy slope to be wide. It is not easy to deside definitely. Therefore, we should build an assistant station at upstream and downstream in order to measure the slope of the water.

    中文摘要 Ⅰ 英文摘要 Ⅱ 謝 誌 Ⅲ 目 錄 Ⅳ 表 目 錄 Ⅶ 圖 目 錄 Ⅷ 符號說明 XI 第一章 緒論 1-1 研究緣起與目的 1 1-2 文獻回顧 2 1-3 本文組織 4 第二章 沖積河流的平均流速公式 2-1 定床渠道平均流速公式 6 2-2 動床渠道非線性阻力關係之平均流速公式 11 2-3 動床渠道線性分離阻力關係之平均流速公式 15 第三章 八掌溪軍輝站及義竹站水文地文狀況 3-1 八掌溪水文地文狀況 19 3-2 軍輝站 22 3-3 義竹站 27 第四章 結果與討論 4-1 軍輝站之能量坡度範圍 41 1 非線性阻力關係式之應用 41 2 愛因斯坦-巴巴洛沙法 42 3 曼寧公式之應用 42 4 流速計算之比較 42 4-2 義竹站之能量坡度範圍 43 1 非線性阻力關係式之應用 43 2 愛因斯坦-巴巴洛沙之應用 43 3 英吉南公式之應用 43 4 流速計算之比較 44 4-3 討論 44 4-3-1 沖積河流之能量坡度 44 4-3-2河床形態 45 4-3-3 平床河流之急流特質 47 第五章 結論與建議 5-1 結論 59 5-2 建議 60 參考文獻 61 附 錄 64

    1. 「八掌溪治理規劃報告(下游段)」,台灣省水利局。(1982)
    2. 王紹成、虞和瑩,「河流動力學」,人民交通出版社,北京。(1991)
    3. 吉川秀夫,「河工學」,朝倉土木工學講座17,朝倉書店。(1966)
    4. 吉川秀夫,「流砂水理學」,丸善株式會社。(1985)
    5. 張瑞瑾,「河流泥砂動力學」,水利電力出版社,武漢水利電力學院。(1988)
    6. 蔡長泰,「濁水溪下游段率定曲線及河床形態之探討」,中國土木水利工程期刊,第八卷,第一期,第47-62頁。(1981)
    7. 盧衍祺 ‚ 「流體力學(下冊)」 ‚ 東華書局 ‚ 台北市。(1993)
    8. Alam, A. M. Z., and Kennedy, J. F.,“Friction factor for flow in sand bed channels,”J. Hydr. Div., ASCE, 95(6), 1973-1992 (1969)
    9. Brownile, W. R.,“Flow depth in sand bed channel,”J. Hydr. Engrg., ASCE, 109(7), 959-990 (1983)
    10. Engelund, F.“Hydraulic resistance of alluvial stream,”J. Hydr. Div., ASCE, 92(2), 315-327 (1966)
    11. Engelund, F., and Hansen, E. “A monograph on sediment transport in alluvial stream,”Teknisk Forlag, Copenhagen. (1967)
    12. Fazle Karim,“Bed concentration and hydraulic resistance in alluvial-channel flows,”Journal of Hydraulic Engineering, Vol. 121, No. 1, 15-25 (1995)
    13. Henderson, F. M. “Open Channel Flow,”Macmillan Publishing Co., Inc., New York (1966)
    14. Graf, W. H.,“Hydraulics of Sediment Transport,”McGraw-Hill Book Co., Inc., New York (1971)
    15. Shen, Hsieh Wen “River Mechanics.”Fort Collins, Colorado, USA. (1971)
    16. Lovera, F., and Kennedy, J. F.,“Friction-factors for flat-bed flows in sand channels,”J. Hydr. Div., ASCE, 95(4), 1227-1234 (1969)
    17. Ranga Raju K. G., and Soni, J. P., “Geometry of ripples and dunes in alluvial channels.” J. Hydr. Res., Delft, The Netherlands, 14(3). (1976)
    18. Richardson, E. V., and Simons, D. B. “Resistance to flow in sand channels.”Proceeding of International Association for Hydraulic Research, 12th Congress, Fort Collins, Colorado, Vol. 1, 141-150 (1967)
    19. Rouse, H.,“Modern conceptions of the mechanics of fluid turbulence.”Transactions of the Hydraulics Divisions, ASCE, Vol. 102, 463-505 (1937)
    20. Wilson, K. C.,“Frictional behavior of sheet flow,”Progress Rep. 67, ISVA, Technical University of Demark, Lyngby, Demark, 11-22 (1988)
    21. Yen, B.C.“hydraulic Resistance in Open Channels”,in Yen,B.C.ed.,Channel Flow Resistance:Centennial of Manning’s Formula,Water Resources Publications,Highlands Ranch,Colo,1991,1-135
    22. Camacho,R.,and B.C.Yen,“Nonlinear Resistance Relatianships for Alluvial Channels”,in B.C.yen ed.,Channel Flow Resistance:Centennial of Manning’s Formula,Water Resources Publications.Highlands Ranch,Colo.,1991,186-194.
    23. Mays‚L‚W “Urban Stormwater Management Tools”‚McGraw-Hill Co ‚ New York ‚ USA ‚ (2004)
    24. Nordin, C. F. Jr. (1964).“Aspects of Flow Resistance and Sediment Transport, Rio Grande Near Bernalillo, New Mexico, ”U.S. Geological Survey Water-Supply Paper 1498-H.
    25. Simons, D. B., and E. V. Richardson (1971),“Resistance to Flow in Alluvial Channels,”U.S. Geological Survey Professional Paper 422-J.

    下載圖示
    2004-08-31公開
    QR CODE