簡易檢索 / 詳目顯示

研究生: 謝政宏
Hsieh, Cheng-Hung
論文名稱: 微生物製劑對福山萵苣生長之影響及根圈菌相之多源基因體研究
Metagenomics of rhizobacteria uncovering the effects of microbial agents on the growth of Lactuca sativa L.
指導教授: 蔣鎮宇
Chiang, Tzen-Yuh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 67
中文關鍵詞: 微生物製劑福山萵苣多源基因體根圈菌相
外文關鍵詞: microbial agent, Lactuca sativa, metagenomics, rhizobacteria
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在農業上,微生物製劑即是將對植物生長或抗病蟲害有助益的微生物,透過篩選、純化、培養、製劑等過程,製成液態或固態的產品,施用於土壤或是植株上,以達到增進作物生產力與健康等目的的製劑。然而目前市面上所販售的微生物製劑五花八門,皆稱具有促進植物生長、健康等功能,但這些產品的真正效益卻較少有更深入的研究來證實。
    本研究以福山萵苣(Lactuca sativa L.)做為實驗物種,分別將3種微生物製劑(G1、M及T),以活菌製劑(G1、M及T)及滅菌製劑(G1k、Mk及Tk)之方式,單獨施用或混合製成3號及7號製劑,施用於福山萵苣,並量測施用後福山萵苣之重量,來檢測微生物製劑之功效,再透過多源基因體分析,進一步了解,微生物製劑原本及培養後之菌相,以及比較施用後的植物根圈土壤微生物菌相,來探討微生物製劑對於作物的影響。
    實驗結果顯示,最具功效者為3號混合型(G1+T)的活菌微生物製劑,次之則為Tk製劑,再次之則為Mk製劑,僅有施用這3組製劑之福山萵苣生長重量較他組具顯著較優(P < 0.05)。接著利用次世代定序之方式,獲得超過2,800萬條序列資料,透過多源基因體分析以及Greengenes資料庫的比對,發現微生物製劑培養後,菌相會趨向低多樣性。在培養前,微生物製劑的主要菌門皆為厚壁菌門;培養後,G1轉變為以變形菌門為主,其他仍為厚壁菌門。進一步解析根圈土壤菌相顯示,福山萵苣具有核心根圈菌群,且施用微生物製劑無法顯著改變核心菌群的組成。此外,我們發現芽胞桿菌目(Bacillales)在福山萵苣生長最佳的3號根圈土壤中,豐度顯著高於其他根圈土壤樣本,顯示其可能是幫助植物在無肥料的貧瘠土壤中生長之關鍵菌種。

    In agriculture, microbial agents which is made through screening, purification, culture, and processed as liquid or solid products, is often used in soil to enhance crop productivity and maintain plant health. However, there is a wide variety of microbial agents selling on the market, but few studies had confirmed the real effects of these products.In this study, we use lettuce (Lactuca sativa L.) as a model to monitor the effects when these plants were applied by three kinds of microbial agents (G1, M and T), with both viable and sterile agents. Wet weight was used to evaluate the growth of lettuce after using microbial agents. Through the metagenomics analysis, we deciphered the microbial compositions of the L. sativa rhizospheres to understand the effect of microbial agents on crops.
    The results indicated that the most effective agent is the mixed viable agent No. 3, followed by the sterile agents, Tk and Mk. Only these three agents showed significant effect on growth promotion of L. sativa compared with control groups (Cw and Csk) (P < 0.05). Through metagenomics analyses, the microbial composition tended to decrease in diversity in our culturing conditions, suggesting the original agents were possibly produced by mixing multiple cultured products. Before culturing, the major phylum of all the microbial agents is Firmicutes; after culturing, the predominant phylum of G1 nevertheless changed to Proteobacteria, while the others were still dominated by Firmicutes. In addition, we found that L. sativa had a core microbiome in its rhizosphere, and it is not easily to be changed after the application of microbial agents, implying that the growth promoting effect might be resulted from the microbial metabolites in the agents. Interestingly, we discovered that Bacillales, which showed significantly higher abundance in fast-growing plants, might be the most important species related to the growth promotion of L. sativa.

    摘要 I Extended abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 壹、 前言 1 一、 微生物製劑 1 二、 福山萵苣/大陸妹(Lactuca sativa L.) 5 三、 根圈土壤(rhizosphere soil) 5 四、 多源基因體學(Metagenomics) 6 五、 DNA條碼 (DNA barcode) 7 六、 研究目的 8 貳、 材料與方法 9 一、 福山萵苣種植 9 二、 微生物製劑混合與培養 9 三、 DNA萃取 10 四、 DNA聚合酶鏈鎖反應 11 五、 PCR產物純化 11 六、 酒精沉澱法 12 七、 多源基因體定序 12 八、 資料分析 13 參、 結果 16 一、 福山萵苣生長結果 16 二、 微生物製劑及福山萵苣根圈土壤多源基因體分析 16 三、 多樣性及豐度分析 18 四、 菌相分類組成分析 19 五、 根圈土壤PCA分析 21 六、 指標微生物豐度分析 22 七、 微生物製劑與福山萵苣根圈OTU分析 22 肆、 討論 24 一、 微生物製劑培養前後的菌相改變 24 二、 福山萵苣具有核心根圈微生物菌相 26 三、 施用微生物製劑對於福山萵苣之生長及根圈菌相之影響 27 伍、 結論 29 陸、 參考資料 30 柒、 附錄 36

    Abou-Shanab, R.A.I., P. van Berkum, and J.S. Angle. 2007. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360-367.
    Ahemad, M. 2014. Growth suppression of legumes in pyriproxyfen stressed soils: A comparative study. Emir J Food Agr 26:66-72.
    Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic Identification and in-Situ Detection of Individual Microbial-Cells without Cultivation. Microbiol Rev 59:143-169.
    Barns, S.M., S.L. Takala, and C.R. Kuske. 1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731-1737.
    Berendsen, R.L., C.M.J. Pieterse, and P.A.H.M. Bakker. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci 17:478-486.
    Bhattacharyya, P.N., and D.K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microb Biot 28:1327-1350.
    Bhromsiri, C., and A. Bhromsiri. 2010. Isolation, screening of growth-promoting activities and diversity of rhizobacteria from vetiver grass and rice plants. Thai Journal of Agricultural Science 43:217-230.
    Boyer, G.L., S.A. Kane, J.A. Alexander, and D.B. Aronson. 1999. Siderophore formation in iron-limited cultures of Frankia sp strain 52065 and Frankia sp strain CeSI5. Can J Bot 77:1316-1320.
    Brady, N., and R. Weil. 1996. The nature and properties of soils.
    Cardinale, M., M. Grube, A. Erlacher, J. Quehenberger, and G. Berg. 2015. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environmental Microbiology 17:239-252.
    Chaparro, J.M., A.M. Sheflin, D.K. Manter, and J.M. Vivanco. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fert Soils 48:489-499.
    Collado, M.C., J. Meriluoto, and S. Salminen. 2007. In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus. Food Research International 40:629-636.
    Cowan, D., Q. Meyer, W. Stafford, S. Muyanga, R. Cameron, and P. Wittwer. 2005. Metagenomic gene discovery: past, present and future. Trends Biotechnol 23:321-329.
    Curtis, I.S. 2006. Lettuce (Lactuca sativa L.). Methods in Molecular Biology 343:449-458.
    Elgharably, A., and P. Marschner. 2011. Microbial activity and biomass and N and P availability in a saline sandy loam amended with inorganic N and lupin residues. Eur J Soil Biol 47:310-315.
    FAOSTAT. 2015. http://faostat.fao.org/. In.
    Frankenberger, J.W.T., Arshad, M. 1995. Microbial synthesis of auxins. In: Frankenberger WT, Arshad M (eds.) Phytohormones in soils. New York pp. 35–71.
    Garrity, G.M., D.J. Brenner, N.R. Krieg, and J.T. Staley. 2005a. Bergey's Manual of Systematic Bacteriology.
    Garrity, G.M., D.J. Brenner, N.R. Krieg, and J.T. Staley. 2005b. Bergey's Manual of Systematic Bacteriology: The Firmicute. 3:464-722.
    Guivarch, A., P. Hinsinger, and S. Staunton. 1999. Root uptake and distribution of radiocaesium from contaminated soils and the enhancement of Cs adsorption in the rhizosphere. Plant Soil 211:131-138.
    Haansuu, P., P. Vuorela., and K. Haahtela. 1999. Detection of antimicrobial and 45Ca 2+ -transport blocking activity in Frankia culture broth extracts. Pharm Pharmacol Lett. 1:1-4.
    Handelsman, J., M.R. Rondon, S.F. Brady, J. Clardy, and R.M. Goodman. 1998. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chem Biol 5:R245-R249.
    Hayat, R., S. Ali, U. Amara, R. Khalid, and I. Ahmed. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579-598.
    Hesselmann, R.P.X., C. Werlen, D. Hahn, J.R. van der Meer, and A.J.B. Zehnder. 1999. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 22:454-465.
    Hiltner, L. 1904. Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59-78.
    Idriss, E.E., O. Makarewicz, A. Farouk, K. Rosner, R. Greiner, H. Bochow, T. Richter, and R. Borriss. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiol-Sgm 148:2097-2109.
    Jackson, M. 1991. Ethylene in root growth and development. The Plant Hormone Ethylene 159–181.
    Jackson, M.A. 1997. Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. Industrial Microbiology and Biotechnology 19:180-187.
    Jastrow, J.D., R.M. Miller, and C.E. Owensby. 2000. Long-term effects of elevated atmospheric CO(2) on below-ground biomass and transformations to soil organic matter in grassland. Plant Soil 224:85-97.
    Jones, D.L., and P.R. Darrah. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247-257.
    Kennedy, I.R., A.T.M.A. Choudhury, and M.L. Kecskes. 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229-1244.
    Klee, H.J., M.B. Hayford, K.A. Kretzmer, G.F. Barry, and G.M. Kishore. 1991. Control of Ethylene Synthesis by Expression of a Bacterial Enzyme in Transgenic Tomato Plants. Plant Cell 3:1187-1193.
    Kovacic, P., P.F. Kiser, D.L. Reger, M.F. Huff, and B.A. Feinberg. 1991. Electrochemistry of Cu(I) bipyridyl complexes with alkene, alkyne, and nitrile ligands. Implications for plant hormone action of ethylene. Free Radic Res Commun 15:143-149.
    Lee, S.H., J.O. Ka, and J.C. Cho. 2008. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol Lett 285:263-269.
    Lin, L., H.M. Ge, T. Yan, Y.H. Qin, and R.X. Tan. 2012. Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta 236:1849-1861.
    Loper, J.E., and J.S. Buyer. 1991. Siderophores in Microbial Interactions on Plant-Surfaces. Mol Plant Microbe In 4:5-13.
    Manson, J.M., M. Rauch, and M.S. Gilmore. 2008. The commensal microbiology of the gastrointestinal tract. Adv Exp Med Biol 635:15-28.
    Mehnaz, S., and G. Lazarovits. 2006. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbial Ecology 51:326-335.
    Mendes, R., M. Kruijt, I. de Bruijn, E. Dekkers, M. van der Voort, J.H. Schneider, Y.M. Piceno, T.Z. DeSantis, G.L. Andersen, P.A. Bakker, and J.M. Raaijmakers. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097-1100.
    Monika, R., A.N. Sharma., and B. Smita. 2011. Assessment of plant extracts fortified with Bacillus thuringiensis (Bacillales: Bacillaceae) for management of Spodoptera litura (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science 31:92-97.
    Orgiazzi, A., M.B. Dunbar, P. Panagos, G.A. de Groot, and P. Lemanceau. 2015. Soil biodiversity and DNA barcodes: opportunities and challenges. Soil Biol Biochem 80:244-250.
    Osullivan, D.J., and F. Ogara. 1992. Traits of Fluorescent Pseudomonas Spp Involved in Suppression of Plant-Root Pathogens. Microbiol Rev 56:662-676.
    Patino-Vera, M., B. Jimenez, K. Balderas, M. Ortiz, R. Allende, A. Carrillo, and E. Galindo. 2005. Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. J Appl Microbiol 99:540-550.
    Patten, C.L., and B.R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207-220.
    Persello-Cartieaux, F., L. Nussaume, and C. Robaglia. 2003. Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189-199.
    Ransom-Jones, E., D.L. Jones, A. Edwards, and J.E. McDonald. 2014. Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs. Syst Appl Microbiol 37:502-509.
    Rao, C.R. 1982. Gini-Simpson index of diversity: A characterization , generalization and applications. Utilitas Math 21:273-282.
    Reid, M.S. 1987. Ethylene in plant growth, development, and senescence. Plant Growth and Development 257-279.
    Riesenfeld, C.S., P.D. Schloss, and J. Handelsman. 2004. Metagenomics: Genomic analysis of microbial communities. Annu Rev Genet 38:525-552.
    Saier, M.H. 2007. Beneficial bacteria and bioremediation. Water Air Soil Poll 184:1-3.
    Sakar., A.N., J. D. A., and J. R. G. W. 1979. Modifications to mechanical and mineralogical composition of soil within the rhizosphere. The Soil-Root Interface 2:125-136.
    Sasikala, C.V.R. 1995. Biotechnological potentials of anoxygenic Phototrophic bacteria. I. Production of Single Cell Protein, vitamins, ubiquinones, hormones, and enzymes and use in waste treatment. Advances in Applied Microbiology 41:173-226.
    Savolainen, V., R.S. Cowan, A.P. Vogler, G.K. Roderick, and R. Lane. 2005. Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philos T Roy Soc B 360:1805-1811.
    Seena, S., C. Pascoal, L. Marvanová, and F. Cássio. 2010. DNA barcoding of fungi: a case study using ITS sequences for identifying aquatic hyphomycete species. Fungal Diversity 44:77-87.
    Shannon, C. 1948. A mathematical theory of communication. AT & T Tech J 27:623-656.
    Stockinger, H., M. Kruger, and A. Schussler. 2010. DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461-474.
    Sturz, A.V., and J. Nowak. 2000. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183-190.
    Sudhakar, A., A. Ramachandran, S. Ghosh, S.E. Hasnain, R.J. Kaufman, and K.V.A. Ramaiah. 2000. Phosphorylation of serine 51 in initiation factor 2 alpha (eIF2 alpha) promotes complex formation between eIF2 alpha(P) and eIF2B and causes inhibition in the guanine nucleotide exchange activity of eIF2B. Biochemistry-Us 39:12929-12938.
    Sutton, J., and G. Peng. 1993. Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83:615–621.
    Suzuki, W., M. Sugawara, K. Miwa, and M. Morikawa. 2014. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce). J Biosci Bioeng 118:41-44.
    Szmigielska, A.M., K.C.J. VanRees, G. Cieslinski, and P.M. Huang. 1996. Low molecular weight dicarboxylic acids in rhizosphere soil of durum wheat. J Agr Food Chem 44:1036-1040.
    Tokala, R.K., J.L. Strap, C.M. Jung, D.L. Crawford, M.H. Salove, L.A. Deobald, J.F. Bailey, and M.J. Morra. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161-2171.
    Tringe, S.G., C. von Mering, A. Kobayashi, A.A. Salamov, K. Chen, H.W. Chang, M. Podar, J.M. Short, E.J. Mathur, J.C. Detter, P. Bork, P. Hugenholtz, and E.M. Rubin. 2005. Comparative metagenomics of microbial communities. Science 308:554-557.
    Ward, N.L., J.F. Challacombe, P.H. Janssen, B. Henrissat, P.M. Coutinho, M. Wu, G. Xie, D.H. Haft, M. Sait, J. Badger, R.D. Barabote, B. Bradley, T.S. Brettin, L.M. Brinkac, D. Bruce, T. Creasy, S.C. Daugherty, T.M. Davidsen, R.T. DeBoy, J.C. Detter, R.J. Dodson, A.S. Durkin, A. Ganapathy, M. Gwinn-Giglio, C.S. Han, H. Khouri, H. Kiss, S.P. Kothari, R. Madupu, K.E. Nelson, W.C. Nelson, I. Paulsen, K. Penn, Q. Ren, M.J. Rosovitz, J.D. Selengut, S. Shrivastava, S.A. Sullivan, R. Tapia, L.S. Thompson, K.L. Watkins, Q. Yang, C. Yu, N. Zafar, L. Zhou, and C.R. Kuske. 2009. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046-2056.
    Weiss, A., V. Jerome, R. Freitag, and H.K. Mayer. 2008. Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biotechnol 81:163-173.
    Woese, C., and G. Fox. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088-5090.
    Yang, S.F., and N.E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Plant Physiol. 35:155-189.
    Yousuf, B., J. Keshri, A. Mishra, and B. Jha. 2012. Application of targeted metagenomics to explore abundance and diversity of CO2-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea. Gene 506:18-24.
    陳和緯、林盈宏、黃振文與張碧芳。(2010) Bacillus mycoides CHT2402 對萵苣幼苗生長之影響。Plant Pathology Bulletin 19,157-165。
    楊秀珠、余思葳與黃裕銘。(2012) 萵苣之病蟲害發生與管理。合理、安全及有效使用農藥輔導教材 7,1-40。
    楊秋忠。(2014) 微生物肥料在作物生長的作用機制。 農業生物資材產業發展研討會專刊 59-68。

    無法下載圖示 校內:2020-09-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE