簡易檢索 / 詳目顯示

研究生: 劉仁堯
Liu, Jen-Yao
論文名稱: 多晶矽鑄造凝固過程行為及微結構之數值模擬及其實驗驗證
The Numerical Simulation of Solidification Behavior and Grain Structure of Multi-Crystalline Silicon Ingot and its Experimental Verification
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 80
中文關鍵詞: 多晶矽鑄造單方向性成長熱交換式長晶爐數值模擬
外文關鍵詞: multi-crystalline, ingot casting, unidirectional growth, hem furnace, numerical simulation, CA method
相關次數: 點閱:67下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為將數值模擬技術應用於單方向性成長多晶矽長晶爐製程之參數優化,並進行實驗驗證。本研究使用套裝軟體模擬單方向性成長多晶矽長晶爐製程中爐體內部溫度場,並分析溫度場隨時間的變化得知矽晶錠之凝固速率,以相變態之成核成長理論進行參數及爐體內部保溫材之優化修改,並以爐體內部溫度曲線、固液界面成長高度、晶粒成長方向及數量進行數值模型驗證。
    本研究首先建立一熱交換式(Heat Exchange Method, HEM)多晶矽長晶爐之溫度場數值模擬系統,以爐體內部溫度曲線、固液界面成長高度、晶粒成長方向及數量等資訊進行驗證,根據模擬結果可推測得知由於爐體僅為單段式熱閘門設計,在長晶初期,矽熔湯底部溫度過低導致成核數目過多,以致於後期晶粒無法成長至理想尺寸,進而提出藉由爐體熱閘門修改以及參數調整使長晶初期減少熔湯底部熱散失,達到減低成核數之目的。因此針對爐體設計進行修改,由單段式熱閘門進行修改為三段式熱閘門,使長晶初期熱散失較少而減少成核數目,以達到增大多晶矽晶粒尺寸及獲得效率更佳之太陽能電池之目的。

    The quality of multi-crystalline silicon ingot from casting process by heat exchange method (HEM) is significantly affected by the cooling condition and the design of the hot-zone. The shape of the liquid-solid interface has great impact on the direction and orientation of grain growth and the occurrence of defects such as dislocations, impurities segregation, and residual thermal stresses. In this study, the temperature variation/distribution of crystallization process of silicon ingot is investigated through numerical simulation and compared with experimental measurements.
    In HEM system, the temperature variation/distribution is affected by the adiabatic condition of the furnace and power curves of the heaters and cooling system in the furnace. By modifying the power curve of heaters and changing the design of heat gate, a better cooling condition is realized and experimentally verified. Incorporated with the Cellular Automaton (CA) method, the grain structures are also simulated. The different slices of the practical silicon ingot are then compared with the results of grain growth simulation to verify the accuracy of the numerical system. With the numerical system validated, various designs and operating conditions can then be numerically evaluated to obtain the optimal design and operation.

    目錄 中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 符號表 IX 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.2.1 鑄造模擬解析回顧 3 1.2.2 微組織模擬回顧 5 1.2.3 太陽能多晶矽鑄造模擬回顧 7 1.3 研究目的 8 第二章 數值方法及理論基礎 11 2.1 電腦模擬鑄造系統之數學模型 11 2.2 微組織模擬之數學模式 14 第三章 實驗方法 18 3.1 實際多晶矽鑄錠長晶製程 18 3.1.1 溫度曲線量測 18 3.1.2 矽熔湯內部溫度量測 19 3.1.3 長晶凝固高度量測 20 3.2 數值模擬 29 3.2.1 溫度場及凝固模擬解析 29 3.2.2 微組織數值模擬 32 第四章 結果與討論 38 4.1 製程中溫度曲線量測結果 38 4.1.1 矽熔湯內部溫度曲線(一) 38 4.1.2 矽熔湯內部溫度曲線(二) 40 4.1.3 光學測溫器溫度曲線 42 4.2 多晶矽鑄造製程初始方案溫度場結果及分析 44 4.3 多晶矽鑄造製程改良方案溫度場結果 60 4.4 多晶矽鑄造晶錠微組織結果 71 第五章 結論 76 參考文獻 77

    [1] W. Kurz and D.J. Fisher, "Fundamental of Solidification, 4th ed", Trans Tech Publications Ltd, 1998,pp. 11-12.
    [2] W.S. Hwang, "Computer Simulation for the Fluid Flow in Casting System", M. S. Thesis, Department of Metallurgical and Materials Engineering, University of Pittsburgh, 1981.
    [3] R.A. Stoehr and W.S. Hwang, "Modeling the Flow of Molten Metal Having a Free Surface During Entry into Molds", Proceeding of the Conference on Modeling of Casting and Welding Processes II, 1983, pp. 47-58.
    [4] W.S. Hwang and R.A. Stoehr, "Fluid Flow Modeling for Computer Aided Design of Casting", Journal of Metals, 1983, pp. 22-29.
    [5] W.S. Hwang and R.A. Stoehr, "Modeling of Fluid Flow", ASM Metals Handbook 15, 1988, pp. 867-876.
    [6] C.W. Hirt, "Flow Analysis for Non-expects", Proceeding of the Conference on Modeling of Casting and Welding Processes II, 1983, pp. 67-75.
    [7] K. Anzai and E. Niyama, "Quasi Three-Dimensional Mold Filling Simulation System for Prediction of Defects in Die Castings", Conference Proceeding on the Modeling of Casting, Welding and Advanced Solidification Processes IV, 1988, pp. 471-485.
    [8] B. Minaie, K.A. Stelson, V.R. Voller, "Analysis of flow patterns and solidification phenomena in the die-casting process", Journal of Engineering Materials and Technology-Transactions of the Asme, V. 113, No. 3, Jul. 1991, pp. 296-302.
    [9] K.O. Yu, "Modeling for Casting and Solidification Process", Marcel Dekker Inc, V. 5. 2002, pp. 123-187.
    [10] S.G.R. Brown, J.A. Spittle, "Computer-simulation of grain-growth and macrostructure development during solidification", Materials Science and Technology, V. 5, No. 4, Apr. 1989, pp. 362-368.
    [11] C.A. Gandin,RappazM, "A coupled finite-element cellular-automaton model for the prediction of dendritic grain structures in solidification processes", Acta Metallurgica Et Materialia, V. 42, No. 7, Jul. 1994, pp. 2233-2246.
    [12] C.A. Gandin, J.L. Desbiolles, M. Rappaz, P. Thevoz, "A three-dimensional cellular automaton-finite element model for the prediction of solidification grain structures", Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, V. 30, No. 12, Dec. 1999, pp. 3153-3165.
    [13] D. Franke, T. Rettelbach, C. Haszler, W. Koch, A. Muller, "Silicon ingot casting: process development by numerical simulations", Solar Energy Materials and Solar Cells, V. 72. 2002, pp. 83-92.
    [14] 陳昀鈿, “LCD矽膜重熔與凝固的電腦模擬”, 國立台灣科技大學機械工程系碩士論文, 2007.
    [15] 蘇彥安, “電腦輔助模擬矽膜重熔與凝固長晶之研究”, 國立台灣科技大學機械工程系碩士論文, 2009.
    [16] D. Franke, T. Rettelbach, C. Haszler, W. Koch, A. Muller, "Silicon ingot casting: process development by numerical simulations", Solar Energy Materials and Solar Cells, V. 72. 2002, pp. 83-92.
    [17] L. Liu, S. Nakano, K. Kakimoto, "Dynamic simulation of temperature and iron distributions in a casting process for crystalline silicon solar cells with a global model", Journal of Crystal Growth, V. 292, No. 2. 2006, pp. 515-518.
    [18] L. Liu, S. Nakano, K. Kakimoto, "Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells", Journal of Crystal Growth, V. 310, No. 7-9. 2008, pp. 2192-2197.
    [19] A. Kuliev, N. Durnev, V. Kalaev, "Analysis of 3D unsteady melt flow and crystallization front geometry during a casting process for silicon solar cells", Journal of Crystal Growth, V. 303, No. 1. 2007, pp. 236-240.
    [20] D. Vizman, J. Friedrich, G. Mueller, "3D time-dependent numerical study of the influence of the melt flow on the interface shape in a silicon ingot casting process", Journal of Crystal Growth, V. 303, No. 1. 2007, pp. 231-235.
    [21] B. Wu, N. Stoddard, R. Ma, R. Clark, "Bulk multicrystalline silicon growth for photovoltaic (PV) application," Journal of Crystal Growth, V. 310, No. 7-9. 2008, pp. 2178-2184.
    [22] K.M. Yeh, C.K. Hseih, W.C. Hsu, C.W. Lan, "High-quality multi-crystalline silicon growth for solar cells by grain-controlled directional solidification", Progress in Photovoltaics: Research and Applications , V.18. 2010, pp.265-271.
    [23] K. Kakimoto, H. Matsuo, S. Hisamatsu, B. Ganesh, G. Bing, X.J. Chen, et al., "Numerical Analysis of mc-Si Crystal Growth", Solid State Phenomena, V. 156-158. 2009, pp. 193-198.
    [24] S.H. Sun, Y. Tan, H.X. Zhang, W. Dong, J.S. Zhang, G.X. Hu, "Effect of Pulling Rate on Multicrystalline Silicon Ingot during Directional Solidification," Materials Science Forum, V. 675-677. 2011, pp. 53-56.
    [25] D.Waite and M. Samond, "Finite Element Simulation of Solidification in Investment Casting", 39thAnnual Technical Meeting: Investment Casting Institute. 1991, pp 17:1-25.
    [26] 何堃森, "引擎渦輪段精密翼形件之鑄造與鍍層技術及製程/微組織模擬研究", 國立成功大學材料科學暨工程學研究所博士論文, 2004.

    下載圖示 校內:2016-08-26公開
    校外:2016-08-26公開
    QR CODE