| 研究生: |
戴云揚 Tai, Yun-Yang |
|---|---|
| 論文名稱: |
類乙醇體離子對雙親分子雙層膜的結構、力學、與熱力學穩定性之分子模擬研究 Molecule simulation study on the structures, mechanics and thermodynamics stabilities of the ethosome-like ion pair amphiphile bilayers |
| 指導教授: |
邱繼正
Chiu, Chi-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 離子對雙親分子 、分子動力學模擬 、乙醇體 |
| 外文關鍵詞: | ion pair amphiphile, molecular dynamics, ethosome |
| 相關次數: | 點閱:104 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離子對雙親分子(ion pair amphiphile, IPA)的自組裝形成的陰陽離子液胞可作為廉價的脂質體替代物。通過乙醇共溶劑可以增強陰陽離子液胞的形成,從而產生具有經皮藥物載體潛力的類乙醇體液胞。我們利用分子動力學(molecular dynamics, MD)模擬來檢驗乙醇共溶劑對烷基三甲基銨 - 烷基硫酸鹽IPA雙層膜在分子上的結構和機械性質的影響。我們的模擬顯示乙醇分子可進入雙層膜並位於IPA親水基團附近,導致IPA雙層膜的分子佔據面積增加和膜厚度減少。根據|SCD|與間扭構形的相關分析,增加乙醇濃度可以進一步降低IPA雙層的疏水區域內的烷基鏈排序,從而將IPA雙層膜凝膠相誘導為液態無序相。此外,乙醇共溶劑可降低IPA雙層膜的機械強度,包括面積膨脹模量,分子傾斜模量和有效彎曲剛度。在乙醇濃度高於30%體積比時,液態無序相雙層膜結構嚴重破壞,形成動態跨膜通道;此結果不同於乙醇體系統中,高乙醇濃度引起雙層膜內反微胞形成的現象。對於凝膠相IPA雙層膜系統,增加乙醇濃度可導致相變。此外,通過自由能擾動方法來計算IPA分子從膜到溶液的溶解自由能來研究IPA雙層膜的熱力學穩定性,我們的結果表明,在乙醇濃度為20體積比下,IPA雙層膜的熱力學穩定性最佳。最後為確定較低介電常數導致的IPA頭部間較強的吸引力,進而使IPA分子排列更緊密,和乙醇插入雙層膜使IPA的烷基鏈間作用力減弱,進而使IPA分子排列更鬆散這兩者的競爭性,我們利用了修飾的SDK模型加上乙醇濃度和介電常數的變化來作探討,結果表明乙醇插入雙層膜使IPA的烷基鏈間作用力減弱的有效能力更強。這項工作提供的分子見解可以為未來的新型類乙醇體IPA液胞的設計提供更多的啟示。
Catanionic vesicles formed by the self-assembly of ion pair amphiphile (IPA) have been proposed as inexpensive liposome substitutes. Formations of catanionic vesicles can be enhanced via ethanol co-solvent, resulting in the ethosome-like catanionic vesicles with promising potentials in transdermal drug delivery and cosmetics. Here, we utilized molecular dynamics (MD) simulations to examine the effects of ethanol co-solvent on the structural and mechanical properties of alkyltrimethyl-ammonium-alkylsulfate IPA bilayers at the molecular level. Our simulations showed that ethanol molecules can insert into the bilayer and locate near the IPA hydrophilic group, leading to increased molecular area and reduced membrane thickness of IPA bilayers. From the deuterium order parameter and gauche fraction analyses, increasing ethanol concentration can further reduce the alkyl chain ordering within the hydrophobic region of IPA bilayers, inducing the gel phase to the liquid-disordered phase transition of IPA bilayers. Furthermore, the ethanol co-solvent can reduce the mechanical strength of IPA bilayers, including the area expansion modulus, the molecular tilt modulus, and the effective bending rigidity. At ethanol concentration above 30 vol%, the liquid disordered phase bilayer structure is severely disrupted with the formation of dynamic transmembrane channel. Such results are different from the ethosome where high ethanol concentration induced the formation of inverse micelle within the bilayer instead. For gel phase IPA bilayer membrane systems, increasing ethanol concentration can lead to the membrane phase transition, from gel to ripple, and then to liquid disordered phase. The thermodynamics stability is also studied by using free energy perturbation to calculate the IPA molecules solvation free energy from membrane to solution. Our results indicate that at 20 vol% ethanol the vesicular IPA bilayer has the best thermodynamic stability of vesicular bilayer most. This is due to the competition between the enhanced solvophobic characteristic of the IPA polar head groups by the lowered dielectric constant and the disordered hydrocarbon chain due to the presence of ethanol. The modified SDK model coupled with variation of ethanol concentration and dielectric constant was applied to investigate the predominating factor. The result indicate a greater effect for the ethanol disordered effect. The molecular insights provided by this work can shed more light on the future designs of novel ethosome-like IPA vesicles.
[1] Brocks DR, Mehvar R. Rate and extent of drug accumulation after multiple dosing revisited. Clin Pharmacokinet 49, (2010) 421–438.
[2] Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14. (2001) 101-14.
[3] Elias PM. Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80, (1983) 44–49.
[4] Tojo K. Random brick model for drug transport across stratum corneum. J Pharm Sci 76, (1987) 889–891.
[5] Abraham W, Downing DT. Lamellar structures formed by stratum corneum lipids in vitro: a deuterium nuclear magnetic resonance (NMR) study. Pharm Res 9, (1992) 1415–1421.
[6] El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: from drug delivery to model membranes. EurJ Pharm Sci 34, (2008) 203–222.
[7] Gray GM, White RJ, Williams RH, Yardley HJ. Lipid composition of the superficial stratum corneum cells of pig epidermis. Br J Dermatol 106, (1982) 59–63.
[8] Lampe MA, Williams ML, Elias PM. Human epidermal lipids: characterization and modulations during differentiation. J Lipid Res 24, (19830 131–140.
[9] Williams AC, Barry BW. Skin absorption enhancers. Crit Rev Ther Drug Carrier Syst 9, (19920 305–353.
[10] Chattaraj S, Walker R. Penetration enhancer classification. In: Smith EW, Maibach HI, eds. Percutaneous Penetration Enhancers. Boca Raton, FL: CRC Press; (1995) 5–20.
[11] Cocera M, Lopez O, Coderch L, Parra JL, de la Maza A. Influence of the level of ceramides on the permeability of stratum corneum lipid liposomes caused by a C12-betaine/sodium dodecyl sulfate mixture. Int J Pharm 183, (1999) 165–173.
[12] Shokri J, Nokhodchi A, Dashbolaghi A, Hassan-Zadeh D, Ghafourian T, Barzegar Jalali M. The effect of surfactants on the skin penetration of diazepam Int J Pharm 228, (2001) 99–107.
[13] Honeywell-Nguyen PL, Bouwstra JA. The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: a suggested mechanism of action. J Control Release 86, (2003) 145–156.
[14] Hadgraft J, Walters KA, Guy RH. Epidermal lipids and topical drug delivery. Semin Dermatol 11, (1992) 139–144.
[15] Hadgraft J. Recent developments in topical and transdermal delivery. Eur J Drug Metab Pharmacokinet 21, (1996) 165–173.
[16] Marjukka Suhonen T, Bouwstra JA, Urtti A. Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations. J Control Release 59, (1999) 149–161.
[17] G. van Meer, D. R. Voelker, G. W. Feigenson, Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol 9, (2008) 112–124.
[18] G. Gregoriadis, A. T. Florence, Lipsomes in Drug Delivery, Drugs 45, (1993) 15–28.
[19] M. J. Rosen, J. T. Kunjappu, Surfactants and Interfacial Phenomena, 4th Edition, Wiley-Interscience, Hoboken, (2004)
[20] S. M. Moghimi, A. C. Hunter, J. C. Murray, Nanomedicine: current status and future prospects, FASEB J. 19, 3, (2005) 311–330.
[21] D. D. Lasic, Novel applications of liposomes, Trends Biotechnol. 16, (1998) 307–321.
[22] I. Ahmad, M. Longenecker, J. Samue, T. M. Allen, Antibody-targeted Delivery of Doxorubicin Entrapped in Sterically Stabilized Liposomes Can Eradicate Lung Cancer in Mice, Cancer Res. 53, (1993) 1484–1488.
[23] Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 65, (2000) 403–18.
[24] Elsayed M, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm 33, (2007) 1–16.
[25] Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomesnovel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J Control Release 65, (1999) 403–18
[26] Bendas ER, Tadros MI. Enhanced transdermal delivery of sulbutamol sulfate via ethosomes. AAPS Pharm Sci Tech 8, (2007) 1–7
[27] Poonam Verma, K. Pathak Therapeutic and cosmeceutical potential of ethosomes: An overview Journal of Advanced Pharmaceutical Technology & Research | | Vol 1 | Issue 3 (2010) 274–282
[28] E. Kaler, A. Murthy, B. Rodriguez, J. Zasadzinski, Spontaneous Vesicle Formation in Aqueous Mixtures of Single-Tailed Surfactants, Science 245, (1989) 1371–1374.
[29] C. Tondre, C. Caillet, Properties of the amphiphilic films in mixeded cationic-anionis vesicles, Adv. Colloid Interface Sci. 93, (2001) 115–134.
[30] E. F. Marques, O. Regev, A. Khan, B. Lindman, Self-organization of double-chained and pseudodoublechained surfactants: counterion and geometry effects, Adv. Colloid Interface Sci. 100, (2003) 83–104.
[31] A.-T. Kuo, C.-H. Chang, Recent Strategies in the Development of Catanionic Vesicles, J. Oleo Sci. 65, 5, (2016) 377–384.
[32] Yu-San Liu, Chih-Fang Wen, Yu-Min Yang Development of ethosome-like catanionic vesicles for dermal drug delivery Journal of the Taiwan Institute of Chemical Engineers 43, (2012) 830–838
[33] Holte, L. L.; Gawrisch, K. Determining Ethanol Distribution in Phospholipid Multilayers with MAS−NOESY Spectra Biochemistry 36, (1997) 4669–4674.
[34] Feller, S. E.; Brown, C. A.; Nizza, D. T.; Gawrisch, K. Nuclear Overhauser enhancement spectroscopy cross-relaxation rates and ethanol distribution across membranes.Biophys. J. 82, (2002) 1396–1404.
[35] Barry, J. A.; Gawrisch, K. Biochemistry Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. 33, (1994) 8082–8088.
[36] Vierl, U.; Lobbecke, L.; Nagel, N.; Cevc, G. Solute effects on the colloidal and phase behavior of lipid bilayer membranes: ethanol-dipalmitoylphosphatidylcholine mixtures. Biophys. J. 67, (1994) 1067–1079.
[37] Ly, H. V.; Longo, M. L. Interfacial Tension Effect of Ethanol on Lipid Bilayer Rigidity, Stability, and Area/Molecular: A Micropipet Aspiration Approach. Langmuir 18, (2002) 8988–8995.
[38] Ly, H. V.; Longo, M. L. The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. Biophys. J. 87, (2004) 1013–1033.
[39] Chanda, J.; Chakraborty, S.; Bandyopadhyay, S. Sensitivity of Hydrogen Bond Lifetime Dynamics to the Presence of Ethanol at the Interface of a Phospholipid Bilayer J. Phys. Chem. B 110, (2006) 3791–3797.
[40] Terama, E.; Ollila, O. H. S.; Salonen, E.; Rowat, A. C.; Trandum, C.; Westh, P.; Patra, M.; Karttunen, M.; Vattulainen, I. Influence of Ethanol on Lipid Membranes: From Lateral Pressure Profiles to Dynamics and Partitioning J. Phys. Chem. B 112, (2008) 4131–4139.
[41] Patra, M.; Salonen, E.; Terama, E.; Vattulainen, I.; Faller, R.; Lee, B. W.; Holopainen, J.; Karttunen, M. Under the Influence of Alcohol: The Effect of Ethanol and Methanol on Lipid Bilayers Biophys. J. 90, (2006) 1121–1135.
[42] Chanda, J.; Bandyopadhyay, S. Perturbation of Phospholipid Bilayer Properties by Ethanol at a High Concentration Langmuir 22, (2006) 3775–3781.
[43] Dickey, A. N.; Faller, R. How Alcohol Chain-Length and Concentration Modulate Hydrogen Bond Formation in a Lipid Bilayer Biophys. J. 92, (2007) 2366–2376.
[44] Griepernau, B.; Leis, S.; Schneider, M. F.; Sikor, M.; Steppich, D.; Bockmann, R. A. Biochim. Biophys. Acta 1768, (2007) 2899–2913.
[45] Andrey A. Gurtovenko, Jamshed Anwar Interaction of Ethanol with Biological Membranes: The Formation of Non-bilayer Structures within the Membrane Interior and their Significance J. Phys. Chem. B 113, (2009) 1983–1992
[46] Rebecca Notman, Jamshed Anwar Breaching the skin barrier — Insights from molecular simulation of model membranes Advanced Drug Delivery Reviews 65, (2013) 237–250
[47] S. Jo, J. B. Lim, J. B. Klauda, W. Im, CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes, Biophys. J. 97, (2009) 50–58.
[48] L. Martinez, R. Andrade, E. G. Birgin, J. M. Martinez, Software News and Update Packmol: A Package for Building Initial Configurations for Molecular Dynamics Simulations, J. Comput. Chem. 30, (2009) 2157–2164.
[49] B. Hess, C. Kutzner, D. Van Der Spoel, E. Lindahl, GROMACS 4: algorithms for highly efficient loadbalanced, and scalable molecular simulation, J. Chem. Theory Comput. 4, (2008) 435–447.
[50] J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O’connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell, R. W. Pastor, Update of the CHARMM all-atom additive force field for lipids: Validation on Six lipid types, Biophys. J. 72, (2010) 7830–7843.
[51] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79, (1983) 926–935.
[52] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, All- atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B 102, (1998) 3586–3616.
[53] T. Darden, D. York, L. Pedersen, Particle mesh Ewald An Nlog(N) method for Ewald sums in large systems, J. Chem. Phys. 98, (1993) 10089–10092.
[54] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103, (1995) 8577–8596.
[55] B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem. 18, (1997) 1469–1472.
[56] S. Nose, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52, (1984) 255–268.
[57] S. Nose, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81, (1984) 511–519.
[58] W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. 31, (1985) 1695–1697.
[59] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics, J. Appl. Phys. 52, (1981) 7182–7190.
[60] S.-S. Qin, Z.-W. Yu, Structural Characterization on the Gel to Liquid-Crystal Phase Transition of Fully Hydrated DSPC and DSPE Bilayers, J. Phys. Chem. B 113, (2009) 8114–8123.
[61] P. S. Coppock, J. T. Kindt, Determination of Phase Transition Temperatures for Atomistic Models of Lipids from Temperature-Dependent Stripe Domain Growth Kinetics, J. Phys. Chem. B 114, (2010) 11468–11473.
[62] C.-C. Chen, C.-A. Tian, C.-C. Chiu, The Effects of Alkyl Chain Combinations on the Structural and Mechanical Properties of Biomimetic Ion Pair Amphiphile Bilayers, Bioengineering 4, 4, (2017) 84.
[63] F.-Y. Huang, C.-C. Chiu, Interplay between alkyl chain asymmetry and cholesterol addition in the rigid ion pair amphiphile bilayer systems, J. Chem. Phys. 146, (2017) 035102.
[64] H. Heller, M. Schaefer, K. Schulten, Molecular Dynamics Simulation of a Bilayer of 200 Lipids in the Gel and in the Liquid-Crystal Phases, J. Phys. Chem. B 97, (1993) 8343–8360.
[65] J. Seelig, Deuterium magnetic resonance: Theory and application to lipid membranes, Q. Rev. Biophys 10, (1997) 353–418.
[66] H. Schindler, J. Seelig, Deuterium Order Parameters in Relation to Thermodynamic Properties of a Phospholipid Bilayer. A Statistical Mechanical Interpretation, Biochemistry 14, (1975) 2283–2287.
[67] E. Guàrdia, J. Martí, L. García-Tarrés, D. Laria, A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions, J. Mol. Liq. 117, (2005) 63–67.
[68] A. Luzar, Resolving the hydrogen bond dynamics conundrum, J. Chem. Phys. 113, (2000) 10663.
[69] S. E. Feller, R. W. Pastor, Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities, J. Chem. Phys. 111, 3, (1999) 1281–1287.
[70] W. Shinoda, K. Shinoda, T. Baba, M. Mikami, Molecular dynamics study of bipolar tetraether lipid membranes, Biophys. J. 89, 5, (2005) 3195–3202.
[71] G. Khelashvili, G. Pabst, D. Harries, Cholesterol Orientation and Tilt Modulus in DMPC Bilayers, J. Phys. Chem. B 114, (2010) 7524–7534.
[72] G. Khelashvili, D. Harries, How cholesterol tilt modulates the mechanical properties of saturated and unsaturated lipid membranes, J. Phys. Chem. B 117, 8, (2013) 2411–2421.
[73] G. Khelashvili, B. Kollmitzer, P. Heftberger, G. Pabst, D. Harries, Calculating the Bending Modulus for Multicomponent Lipid Membranes in Different Thermodynamic Phases, J. Chem. Theory Comput. 9, 9, (2013) 3866–3871.
[74] S. P. Tiwari, N. Rai, E. J. Maginn, Dynamics of actinyl ions in water: a molecular dynamics simulation study, Phys. Chem. Chem. Phys. 16, (2014) 8060–8069.
[75] R. W. Impey, P. A. Madden, I. R. McDonald, Hydration and Mobility of Ions in Solution, J. Phys. Chem. 87, (1983) 5071–5083.
[76] E. Guardia, J. A. Padro, Molecular Dynamics Simulation of Single Ions in Aqueous Solutions: Effects of the Flexibility of the Water Molecules, J. Phys. Chem. 94, (1990) 6049–6055.
[77] WILLIAM J. ALLEN, JUSTIN A. LEMKUL, DAVID R. BEVAN GridMAT-MD: A Grid-Based Membrane Analysis Tool for Use With Molecular Dynamics Journal of Computational Chemistry 30, 12, (2009) 1952–1958
[78] Shan-Shan Qin and Zhi-Wu Yu Structural Characterization on the Gel to Liquid-Crystal Phase Transition of Fully Hydrated DSPC and DSPE Bilayers J. Phys. Chem. B 113, (2009) 8114–8123
[79] R. W. Zwanzig, High-Temperature Equation of State by a Perturbation Method. I Nonpolar Gases, J. Chem. Phys. 22, (1954) 1420–1426.
[80] Kästner, J. Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1, 6, (2011) 932-942
[81] Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A., & Rosenberg, J. M. The Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. I. The Method. Journal of Computational Chemistry, 13, 8, (1992) 1011-1021
[82] Arben Jusufi, Antti-Pekka Hynninen, and Athanassios Z. Panagiotopoulos Implicit Solvent Models for Micellization of Ionic Surfactants J. Phys. Chem. B 112, (2008) 13783–13792
[83] W.-H. Lee, Y.-L. Tang, T.-C. Chiu, Y.-M. Yang, Synthesis of Ion-Pair Amphiphiles and Calorimetric Study on the Gel to Liquid-Crystalline Phase Transition Behavior of Their Bilayers, J. Chem. Eng. Data 60, 4, (2015) 1119–1125.
[84] Barducci, A., Bonomi, M., & Parrinello, M. Metadynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 1, 5, (2011) 826-843.
[85] Hui-Yuan Zhang, Qin Xu, Yu-Kun Wang, Tang-Zhen Zhao, Dan Hu, and Dong-Qing Wei Passive Transmembrane Permeation Mechanisms of Monovalent Ions Explored by Molecular Dynamics Simulations J. Chem. Theory Comput. 12, (2016) 4959−4969
[86] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117, 1 (1995) 1–19.
[87] IUPAC, Compendium of Chemical Terminology, 2nd ed. (1997).
校內:2023-09-07公開