| 研究生: |
李佩玲 Li, Pei-Ling |
|---|---|
| 論文名稱: |
以遙測影像實施大尺度變異點自動化比對與整治績效評估 Restoration Efficiency Evaluating by Automatic Changing Detection with Large-scale Remote Sensing Images |
| 指導教授: |
余騰鐸
Yu, Teng-To |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 不安定指數 、山崩潛感分析 、遙測影像 、大尺度和小尺度 、整治績效 |
| 外文關鍵詞: | Instability Index Method, Landslide Susceptibility Analysis, Remote Sensed images, Large and Small Scale, Restoration Efficiency |
| 相關次數: | 點閱:164 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地理位置與氣候因素特殊,加上造山活動使得台灣地形陡峻、地質破碎。而歷年來國內大地震使得地層受到擾動,誘發山崩之累積降雨門檻值逐漸降低,每當遇有強烈颱風、地震或是梅雨季伴隨強降雨發生時,皆會導致土石流及山崩等災害產生。
過去山崩模式分析多針對單一地震或颱風事件來進行研究,對於台灣及水庫集水區而言,兩者因空間尺度不同,因此引發山崩之影響因子也不盡相同。本研究以全台研究區及曾文水庫集水區,進行不同遙測影像尺度下,討論其山崩複合性及長、短時間觀測下,影響因子之特性與相關性,並進行山崩潛勢模擬分析與山崩災害圖建置。此外,為瞭解政府每年所進行的崩塌地整治工程中,植生變遷發展趨勢,研究中以曾文水庫集水區為例,透過不同時期衛星影像,以常態化植生指數(NDVI)與植生覆蓋因子(C) 值在崩塌地治理工程與自然復育下(未整治)進行不同時期之植生變遷狀況監測評析。
研究結果指出,全台研究區進行2011年~2013年不安定指數分析,三年影響因子排序重複性高,顯示因時間性拉長、區域範圍大,各影響因子之特質在計算過程中有可能會被消蝕或拉升至一平均值。而曾文水庫集水區進行2012年5月、7月及8月不安定指數分析,三個月因子排序重複性低,輔以當年度豪雨事件進行探討,發現於短時間小尺度空間中,當觀測時間較短及區域範圍小時,影響因子區域性特質將被突顯反應出。此外,透過2012年~2014年衛星影像,進行常態化差異植生指標與植生覆蓋C值估算,顯示曾文水庫集水區治理工程之植生變遷呈現良好趨勢。同時,輔以2012年~2014年觀測之工程變化照片,探討在不同工法下治理工程之整治績效評估。
The steep and geological sophisticated terrain in Taiwan are caused by varies factors such as earthquake, weather condition, and Orogeny. The integrity of stratum is affected by server earthquakes thus decreases the threshold of accumulated rainfall that induce the landslides. Therefore, the severe storms, earthquakes, and the rainy season could cause landslides in Taiwan.
In the past, most of landslide model analyses were focused on a single earthquake or a typhoon event. For researches of reservoirs watersheds in Taiwan area, the results of landslide model analysis that focusing on single event are affected by the dominated factors, especially the differences in spatial scale. This study analyzed the remote sensing images of varies scales in Taiwan and the Tseng-wen reservoir watershed to discuss the characteristics of factor combinations and its correlations within long-term and short-term time scale. Moreover, the landslide susceptibility analysis and maps is also established in the study as well. In order to evaluate the plant restoration efficiency that are carried by government agency every year, this study used the data in Tseng-wen reservoir watershed and analyzed via satellite images at varies time scale. The analysis methods include adopting NDVI and plant coverage factors in landslide restoration by analyze the vegetation changes in different time scale.
According to the landslide instability index analysis from 2011 to 2013, the sorted factors are highly overlapped. The case that covers longer time-span or large study areas shall affects the results for that the values of each factors were either eliminated or averaged to a mean value. The instability index analysis during May, July, and August in 2012 in the Tseng-wen reservoir watersheds shows that the sorted factors have fewer repetitions occurrence. Combining the corresponding heavy precipitation observed during the time span, the sorted factors show the localized characteristics due to short time span and small-scale study areas. Moreover, based on the satellite images from 2012 to 2014, the calculated Normalization Difference Vegetation Index and vegetation coverage indicated the recovery of vegetation change in Tseng-wen reservoir watershed. At the meantime, this study also discussed the assessments based on a variety of restoration efficiency outcomes according to the on site pictures were taken from 2012 to 2014 during the constructions.
1.小出博(1954),「山崩れ」,日本:古今書院。
2.工研院能源所(1992),「崩塌地調查、規劃與設計手冊(地滑篇)」,行政院農業委員會水土保持局委託研究報告。
3.日本建設省(1958),「河川防砂技術基準」。
4.王邦達(2004),「全偏極合成孔徑雷達非監督式目標分類與極化方位角偏移效應估算之研究」,國立中央大學太空科學研究所碩士論文。
5.尹孝元、梁隆鑫、陳錕山與黃珮琦(2010),「衛星影像於國土變異監測之應用」,航測及遙測學刊,第十五卷第一期,頁65-78。
6.台灣省水土保持局、中華水土保持學會(1992),「水土保持手冊」,行政院農委會印。
7.朱聖心(2001),「應用地理資訊系統製作地震及降雨所引致之山崩危險圖」,國立臺灣大學土木工程研究所碩士論文。
8.行政院農委會水土保持局 (2008),「水土保持保育治理成效之定量評估及觀測計畫(1/3)」,行政院農委會水土保持局委託計畫報告。
9.行政院農委會水土保持局 (2008),「石門水庫集水區衛星影像變異點判釋與現況監測」,行政院農委會水土保持局委託計畫報告。
10.行政院農業委員會水土保持局臺南分局(2010),「南部地區崩塌地治理先期調查整合計畫」,行政院農業委員會水土保持局臺南分局委託計畫報告。
11.行政院農業委員會林務局嘉義林區管理處(2010),「曾文水庫上游林班地整治調查規劃」,行政院農業委員會林務局嘉義林區管理處委託計畫報告。
12.行政院農業委員會水土保持局(2011),「曾文水庫集水區多元尺度環境調查與保育治理成效評估」,行政院農委會水土保持局委託計畫報告。
13.行政院農委會水土保持局(2012),「曾文南化烏山頭水庫集水區環境變異監測及治理成效評估」行政院農委會水土保持局委託計畫報告。
14.朱豐沂(2012),「以環境指標優選集水區崩塌治理區位之研究」,中興大學水土保持學系碩士論文。
15.何春蓀(1980),「普通地質學」,國立編譯館主編,臺灣:五南圖書出版有限公司,頁670。
16.呂政諭(2000),「地震與颱風作用下阿里山地區公路邊坡崩壞特性之研究」,國立成功大學土木工程學系碩士論文。
17.何幸娟、林柏勳、張玉粦、冀樹勇、簡以達、蔡明發、費立沅 (2013) ,「莫拉克颱風後曾文水庫集水區山坡地保育治理成效評估及追蹤」,中興工程,第一百一十八期,頁21-30。
18.李三畏(1984),「台灣崩塌問題探討」,地工技術,第七期,頁43-79。
19.李錫堤、黃俊鴻、劉進金、蔡榮君、洪國華、林書義(1998),「林口台地及鄰接海岸地形變遷與地貌復原可行性探討」,公共工程委員會專案委託計畫成果報告,共135頁。
20.李錫堤、潘國樑、林銘郎(2003),「山崩調查與危險度評估-山崩潛感分析之研究(1/3)」,經濟部中央地質調查所報告,第92-11 號,共154 頁。
21.李錫堤、潘國樑、林銘郎(2004),「山崩調查與危險度評估-山崩潛感分析之研究(2/3)」,經濟部中央地質調查所報告,第93-17 號,共264 頁。
22.李錫堤、潘國樑、林銘郎(2005),「山崩調查與危險度評估-山崩潛感分析之研究(3/3)」,經濟部中央地質調查所報告,第94-18 號,共268 頁。
23.李錫提(2009),「山崩及土石流災害分析的方法學回顧與展望」,台灣公共工程學刊,第五卷第一期,頁1-29。
24.李馨慈(2004),「應用累積位移法於地震引起之山崩潛勢分析」,成大資源工程研究所碩士論文。
25.李馨慈(2010),「重大地震地表擾動衰減特性於震後高強度降雨之山崩潛勢分析」,國立成功大學資源工程學系博士論文。
26.吳水吉(1999),「航遙測資料在 921 集集大地震之應用」,農政與農情,第八十九期,頁73-80。
27.吳振威(2003),「公路邊坡保護工法之選擇模式研究-以南二高白河以南路段為例」,國立成功大學資源工程研究所碩士論文。
28.吳江富、許玉明、黃奕璁(2007),「集水區整體治理規劃 ─以二部坑溪楓港溪集水區為例」,中華技術專題報導,第七十三期,頁92-99。
29.林書毅(1999),「區域性山坡穩定評估方法探討-以林口台地為例」,國立中央大學應用地質研究所碩士論文。
30.林啟陽(1999),「地物導向自動化影像區隔系統建立之研究」,台大地理所碩士論文。
31.林昭遠、吳瑞鵬、林文賜(2001),「921 震災崩塌地植生復育監測與評估」,中華水土保持學報,第三十二期第一卷,頁59-66。
32.林昭遠、藍欣茹(2015),「山區道路與小林村崩塌關係之探討」,水土保持學報,第四十七期第一卷,頁1287-1296。
33.林彥享(2003),「以類神經網路進行地震誘發山崩之潛感分析」,國立中央大學應用地質研究所碩士論文。
34.林家慶(2007),「應用福衛二號時間序列影像監測曾文水庫集水區崩塌地之時空變化」,國立成功大學地球科學系碩士論文。
35.林文雄(2008),「遙測影像技術應用於崩塌地潛勢之評估-以苗栗縣泰安鄉坡地為例」,國立聯合大學土木與防災工程學系碩士論文。
36.林伯勳、蕭震洋、許振崑、冀樹勇(2012),「空載光達高精度掃描技術評估石門水庫集水區整治成效」,中興工程,第一百一十四期,頁23-33。
37.洪如江(1998),「初等工程地質學大綱」,財團法人地工技術研究發展基金會,台北,頁105-115。
38.洪雨柔 (2013),「降雨對山崩潛勢分析之影響-以南橫公路50至110k沿線為例」,中興大學水土保持研究所碩士論文。
39.施秀諭(2014),「以遙測影像分析台灣山區地貌變異之因子」,國立成功大學資源工程研究所碩士論文。
40.逢甲大學營建及防災研究中心(2004),「集水區整體治理調查規劃作業研究及土砂生產量推估模式」。
41.陳凱榮(2000),「中橫公路山崩潛感分級研究-以東勢-德基為例」,國立中央大學應用地質研究所碩士論文。
42.陳志豪(2002),「變質岩公路邊坡之破壞潛勢分析-以南橫公路埡口至新武段為例」,國立成功大學資源工程研究所碩士論文。
43.陳良健(2002),「遙感探測於災害防治之應用」,土木水利,第二十九卷第二期,頁35-45。
44.陳崇華(2004),「台十一線海岸公路邊坡崩塌災害分析」,逢甲大學交通工程與管理學系碩士論文。
45.陳樹群、賴益成(2004),「水庫集水區土砂評量與整治率評估模式」,中華水土保持學報,第三十五卷第一期,頁53-67。
46.陳蕙華(2005),「遙測衛星影像於南清公路崩塌地潛感分析之應用」,逢甲大學環境資訊科技研究所碩士論文。
47.陳詔安(2008),「應用遙測影像評估都市植生環境之研究」,中國文化大學建築及都市計畫研究所碩士論文。
48.陳建同(2009),「應用影像分段技術與多時段衛星影像於崩塌地植生復育成效分析研究」,成功大學資源工程學系學位論文。
49.陳添水、林政侑、何世華、林昭遠、楊燿隆(2014),「以生物多樣性指標評估集水區崩塌地治理優選順序」,中華水土保持學報,第四十五卷第二期,頁119-127。
50.高雅嫻(2005),「應用山崩密度及累積位移法於地震引起之山崩潛感分析」,國立成功大學資源工程學系碩士論文。
51.張石角(1972),「曾文水庫集水區淤砂問題之定量性研究」,中華水土保持學報,第三卷第二期,頁50-69。
52.張石角(1975),「台灣崩塌地與地質特徵」,崩塌地調查與處理技術之訓練及研究,頁16-17。
53.張石角、姜善鑫、胡蘇澄、吳輝龍合編(1989) ,「台灣的崩山」,水土保持教材,林業特刊第二十四號,頁83-95。
54.張石角(1989),「陽明山國家公園環境敏感區及潛在災害地區之調查研究」,內政部營建署陽明山國家公園管理處,共78頁。
55.張石角(2004),「特殊地質區與土石災害問題」,坡地防災創新研究成果研討會論文集,頁85-92。
56.張三郎(1996),「治山防洪計畫之展望」,坡地防災研討會論文集。
57.張政亮(2004),「地理資訊系統應用於蘭陽地區環境地質災害分佈之調查分析」,宜蘭研究第五屆學術研討會論文集,頁73-112。
58.張弼超(2005),「運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例」,國立中央大學應用地質研究所碩士論文。
59.張郁嘉(2012),「山崩潛勢分析-以荖濃溪集水區為例」,逢甲大學都市計畫與空間資訊學系碩士論文。
60.許煜煌(2002),「以不安定指數法進行地震引致坡地破壞模式分析」, 國立臺灣大學土木工程學研究所碩士論文。
61.莊雲翰(2002),「結合影像區塊及知識庫分類之研究-以IKONOS衛星影像為例」,國立中央大學土木工程學系碩士論文。
62.莊政斌(2004),「影像分割技術於高解析衛星影像分類之應用」,國立中央大學土木工程學系碩士論文。
63.葉昭憲、賴如慧、周天穎、游繁結 (1999),「集水區整治率評估模式之探討」,中華水土保持學報,第三十卷第二期,頁137-147。
64.黃信茗(2001),「地理資訊系統及衛星影像應用於灌溉計劃之研究」,國立屏東科技大學土木工程系研究所碩士論文。
65.黃春銘(2005),「使用模糊類神經網路進行山崩潛感分析-以臺灣中部國姓地區為例」,國立中央大學應用地質研究所碩士論文。
66.黃奕璁、許玉明、吳江富(2007),「集水區整體治理規劃-以二部坑溪-楓港溪集水區為例」,中華技術,第七十三期,頁92-99。
67.溫振宇(2005),「結合地震與颱風因子之山崩模式分析」,國立成功大學地球科學研究所碩士論文。
68.楊智堯(1998),「類神經網路於邊坡破壞潛能分析之應用研究」,國立成功大學土木工程學系碩士論文。
69.楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利 (2011),「臺灣 常用山崩分類系統」,第十四屆大地工程研討會。
70.楊明德、黃亦達、黃凱翔、張益祥(2012),「利用崩塌潛勢圖作風險評估之應用-以陳有蘭溪流域為例」,中華水土保持學報,第四十三卷第一期,頁1-11。
71.楊龍士、陳慧欣、劉致亨、周天穎(2008),「以Boosting法改進監督式分類於水稻田樣本特性之研究」,航測及遙測學刊,第十三卷第一期,頁43-55。
72.葉凱翔、伍家樂(2009),「新竹五峰鄉清泉部落崩塌災害系統分析與個案研究」,地理教育,第三十五期,頁95-114。
73.葉家承、徐百輝、張子瑩(2015),「應用空間資料探勘技術於致災因子初探:以濁水溪流域之崩塌地為例」,國家災害防救科技中心災害防救電子報,第一百十四期,頁1-17。
74.經濟部中央地質調查所(1980),「臺灣坡地社區工程地質調查與探勘報告-總論」,第一卷第一集,共73 頁。
75.經濟部中央地質調查所(2005),「山崩潛感分析之研究(3/3)總報告」,經濟部中央地質調查所委託計畫。
76.經濟部中央地質調查所(2006),「南投縣仁愛鄉盧山岩體滑動勘察報告」,頁2。
77.經濟部水利署南區水資源局 (2011a),「曾文南化烏山頭水庫治理及穩定南部地區供水計畫」,頁14-15。
78.經濟部水利署南區水資源局 (2011b),「曾文水庫集水區漂流木潛勢分析及因應對策研究」,經濟部水利署南區水資源局委託計畫報告。
79.經濟部水利署南區水資源局(2013),「曾文水庫集水區土地變異及土砂災害監測成果報告」,經濟部水利署南區水資源局委託計畫報告。
80.經濟部水利署南區水資源局(2013),「曾文水庫集水區巡查管理暨衛星監測計畫」,經濟部水利署南區水資源局委託計畫報告。
81.經濟部水利署南區水資源局(2015),「104 年度曾文水庫集水區巡查管理暨衛星監測計畫」,經濟部水利署南區水資源局委託計畫報告。
82.鄭元振(1992),「地理資訊系統在區域邊坡穩定分析之應用-中橫公路天祥至太魯閣段」,國立成功大學礦冶及材料科學研究所碩士論文。
83.鄭傑銘(2003),「應用 GIS 進行豪雨及地震引致山崩之潛感性分析」,國立台灣大學土木工程研究所碩士論文。
84.廖軒吾(2000),「集集地震誘發之山崩」,國立中央大學應用地質研究所碩士論文。
85.廖啟雯(2004),「機率式地震誘發山崩危害度分析–以國姓地區為例」,國立中央大學地球物理研究所博士論文。
86.鄭雅文、史天元、蕭國鑫(2008),「結合空間和光譜資訊於高解析度影像自動判釋」,第二十七屆測量及空間資訊研討會,國立成功大學,台南。
87.潘國樑(1996),「新中橫公路受賀伯風災之遙測技術」,地工技術,第五十七期,頁45-54。
88.潘國樑(2006),「遙測學大綱: 遙測概念、原理與影像判釋技術 (初版) 」, 臺北市: 科技圖書出版。
89.劉守恆(2002),「衛星影像於崩塌地自動分類組合之研究」,國立成功大學地球科學研究所碩士論文。
90.劉名翔(2010),「 利用監督式分類並配合NDVI指標進行植生分佈探討-以南投縣竹山鎮林境為例」,朝陽科技大學營建工程系碩士論文。
91.蔡正一(2006),「應用福衛2號多譜影像辨識林區土地利用型之研究」,國立嘉義大學碩士論文。
92.蕭國鑫、尹承遠、劉進金、游明芳、王晉倫(2003),「SPOT影像與航照資料應用於崩塌地辨識之探討」,航測及遙測學刊,第八卷第四期,頁29-42。
93.蕭國鑫、游明芳、劉進金、張志立(2004),「高解析影像應用於崩塌地判釋之研究」,台灣地理資訊年會暨學術研討會。
94.謝獻仁(1998),「類神經網路於落石坡危險度評估」,國立交通大學土木工程研究所碩士論文。
95.簡李濱(1992),「應用地理資訊系統建立坡地安定評估之計量方法」,國立中興大學土木工程研究所碩士論文。
96.魏曉萍(2003),「QuickBird衛星影像探討分類方法之研究」,中華大學土木工程學系碩士論文。
97.邊佳炫(2014),「以GIS綜合評估降雨引發之山崩體積與面積對應關係 - 以莫拉克風災為例」,國立成功大學資源工程研究所碩士論文。
98.藍世欽(2000),「工程地質因子對道路邊坡穩定性之影響-以南橫公路甲仙至梅山段」,國立成功大學資源工程研究所碩士論文。
99.Akgun, A., and Bulut, F. (2007), “GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region,” Environmental Geology, 51(8), pp.1377~1387.
100.Aleotti, P., Chowdhury, R. (1999), “Landslide hazard assessment: summary review and new perspectives,” Bull Eng Geol Env, 58, pp.21~44.
101.Atkinson, P., Jiskoot, H., Massari, R., and Murray, T. (1998), “Generalized linear modelling in geomorphology,” Earth Surface Processes and Landforms, 23(13), pp.1185~1195.
102.Ayalew, L., Yamagishi, H., Ugawa, N. (2004), “Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River,” Niigata Prefecture, Japan, Landslides, 1, pp.73-81.
103.Ayalew, L., and Yamagishi, H. (2005), “The application of gis-based logistic regression for landslide susceptibility mapping in the kakuda-yahiko mountains, central japan,” Geomorphology, 65(1-2), pp.15~31.
104.Baatz, M., & Schape, A. (2000), “Multiresolution Segmentation – an optimization approach for high quality multi-scale image segmentation,” Angewandte Geographische Informationsverarbeitung XII, Beitrage zum AGIT-Symposium Salzburg, Karlsruhe, Herbert Wichmann Verlag, pp.12~23.
105.Baatz, M., Benz, U., Dehghani, S., Heynen, M., Holtje, A., Hofmann, P., Lingenfelder, I., Mimler., M., Sohlbach, M., and Webr, M. (2004), “eConition Professional User Guide 4,” Definiens Imagine GmbH, Munchen, Germany.
106.Baeza C., Corominas J. (2001), “Assessment of shallow landslide susceptibility by means of multivariate statistical techniques,” Earth Surface Processes and Landforms, 26,pp.1251~1263.
107.Baeza, C., Lantada, N., and Moya, J. (2010), “Validation and evaluation of two multivariate statistical models for predictive shallow landslide susceptibility mapping of the Eastern Pyrenees (Spain),” Environmental Earth Sciences, 61(3), pp.507~523.
108.Bai, S.B., Zhou, P.G., Wang, J., Hou, S.S., Lu, G.N., and Zhang, F.Y. (2007), “GIS-based susceptibility mapping with comparisons of results from data-driven bivariate versus logistic regression in the three Gorges area,” China, 12th Conference of the International Association for Mathematical Geology, Beijing, China, pp.163~165.
109.Banks, S.P. (1991), “Signal processing, image processing and pattern recognition,”Prentice Hall PTR.
110.Barredo, J.I., Benavides, A., Hervas, J., and van Westen, C.J. (2000), “Comparing heuristic landslide hazard assessment techniques using gis in the tirajana basin, gran canaria island, spain,” JAG, 2(1), pp.9~23.
111.Baum, R.L., Savage, W.Z., and Godt, J.W. (2002), “TRIGRS-a FORTRAN program for transient rainfall infiltration and grid-based regional slope stability analysis,” US Geological Survey OpenFile Report 2002~424, pp.38.
112.Baum, R.L., Savage, W.Z., and Godt, J.W. (2008), “TRIGRS-A FORTRAN program for transient rainfall infiltration and grid-based regional slope stability analysis,” version 2.0, US Geological Survey Open-File Report 2008-1159, pp.75.
113.Brabb, E.E., Pampeyan, E.H., Bonilla, M.G. (1972), “Landslide susceptibility in San Mateo County, California,” U.S. Geol. Surv., Misc. Field Studies Map, MF-360.
114.Brabb, E.E. (1984), “Innovative approaches to landslide hazard and risk mapping,” in Proc., Fourth International Symposium on Landslides, Canadian Geotechnical Society, Toronto, Canada, pp.307~324.
115.Brenning, A. (2005), “Spatial prediction models for landslide hazards: review, comparison and evaluation,” Natural Hazards and Earth System Science, 5(6), pp.853~862.
116.Biswajeet, P., and Saied, P. (2010), “Comparison between prediction capabilities of neural network and fuzzy logic techniques for l and slide susceptibility mapping,” Disaster Advances, 3(3), pp.26~34.
117.Buiten, H.J. & Clevers, J. G. P. W. (1993) , “Land observation by remote sensing : theory and applications, Gordon and Breach Science Publishers,” Langhorne, Pa., U.S.A., pp.642.
118.Chung, C.F. & Fabbri, A.G. (1993), “The representation of geoscience information for data integration”, Nonrenewable Resources, 2(3), pp.122~139.
119.Carrara, A. (1983), “Multivariate models for landslide hazardevaluation,” Mathmatical Geology, 15(3), pp.403~427.
120.Carrara, A. (1988), “Landslide hazard mapping by statistical methods: A “black box”approach,” In Workshop on Natural Disasters in European Mediterranean Countries, Perugia, Italy, Consiglio Nazionale delle Ricerche, Perugia, pp.205~224.
121.Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P. (1990), “Geographical information systems and multivariate models in landslide hazard evaluation,” In ALPS 90 Alpine Landslide Practial Seminar, Sixth International Conference and Field Workshop on Landslides, Aug.31-Sept.12, Milan, Italy, Universita degli Studi de Milano, pp.17~28.
122.Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P. (1991), “GIS techniques and statistical models in evaluating landslide hazard,” Earth Surface Processes and Landforms, 16(5), pp.427~445.
123.Carrara, A., Cardinali, M., Detti, R., Guzzetti, F. (1992), “Uncertainty in assessing landslide hazard and risk,” ITC Journal, 2, pp.172~183.
124.Carro M., De Amicis M., Luzi L., Marzorati S. (2003), “The application of predictive modeling techniques to landslides induced by earthquakes: the case study of the 26 September 1997 Umbria-Marche earthquake Italy,Engineering Geology,” 69, pp.139~159.
125.Cevik E., Topal T. (2003), “GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek Turkey,” Environmental Geology, 44, pp.9949~962.
126.Chang, K. T., Chiang, S. H., & Hsu, M. L. (2007), “Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression,” Geomorphology, 89(3-4), pp. 335-347.
127.Chau K.T., Lo K.H.(2004), “Hazard assessment of debris flows for Leung King Estate of Hong Kong by incorporating GIS with numerical simulations,” Natural Hazards and Earth system sciences, 4, pp.103~116.
128.Chau K.T., Sze Y.L., Fung M.K., Wong W.Y., Fong E.L., Chan LCP. (2004), “Landslide hazard analysis for Hong Kong using landslide inventory and GIS,” Computers & Geosciences, 30, pp.429~443.
129.Chen, Z.H., and Wang, J.F. (2007), “Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada,” Natural Hazards, 42(1), pp.75~89.
130.Chung, C.F., and Fabbri, A.G. (1999), “Probabilistic prediction models for landslide hazard mapping,” Photogrammetric Engineering & Remote Sensing, 65(12), pp.1389~1399.
131.Chung C.F., Fabbri A. G. (2003), “Validation of spatial prediction models for landslide hazard mapping,” Natural Hazards, 30(3), pp.451~472.
132.Conoscenti, C., Di Maggio, C., and Rotighano, E. (2008), “GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy),” Geomorphology, 94(3-4), pp.325-339.
133.Dahal, R.K., Hasegawa, S., Nonomura, A., Ya anaka, M., Dhakal, S., and Paudyal, P. (2008a), “Predictive modelling of rainfall-induce landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence,” Geomorphology, 102(3-4), pp.496~510.
134.Dahal,R. K., Hasegawa,S., Nonomura, A.,Yamanaka, M., Masuda, T., and Nishino, K.(2008b), “GIS-based weights-of-evidene modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping,” Environmental Geology, 54(2), pp.311~324.
135.Dai, F. C., Lee, C. F., Li, J., and Xu, Z. W. (2001), “Assessment of landslide susceptibility on the natural terrain of lantau island, hongkong,” Environmental Geology, 40(3), pp.381~391.
136.Dai F.C., Lee C.F. (2003), “A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression,” Earth Surface Process and Landform, 28, pp.527~545.
137.Das, I., Sahoo,S., van Westen, C., Stein, A., and Hack, R. (2010), “Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road ection in the Northern Himalayas (India) ,” Geomorphology, 114(4), pp.627~637.
138.Dietrich, W.E., Reiss, R., Hsu, M.L., Montgomery, D.R. (1995), “A process-based model for colluvial soil depth and shallow landsliding using digital elevation data,” Hydrological Processes, 9, pp.383~400.
139.Dominguez-Cuesta, M.J., Jimenez-Sanchez, M., and Berrezueta, E. (2007), “Landslides in the central coalfield (Cantabrian Mountains, NW Spain): Geomorphological features, conditioning factors and methodological implications in susceptibility assessment,” Geomorphology, 89(3-4), pp.358~369.
140.Dominguez-Cuesta, M.J., Jimenez-Sanchez, M., Colubi, A., and Gonzalez-Rodriguez, G. (2010), “Modelling shallow landslide susceptibility: A new approach in logistic regression by using favorability assessment,” International Journal of Earth Sciences, 99(3), pp.661~674.
141.Duman T.Y., Can T., Emre O., Kecer M., Dogan A., Ates S., Durmaz S. (2005), “Landslide inventory of northwestern Anatolia, Turkey,” Engineering Geology, 77, pp.99~114.
142.Ercanoglu, M., and Gokceoglu, C. (2004), “Use of fuzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey),” Engineering Geology, 75(3-4), pp.229~250.
143.Ercanoglu, M., Gokceoglu, C., and Van Asch, T.W. J. (2004), “Landslide susceptibility zoning North of Yenice (NW Turkey) by multivariate statistical techniques,” Natural Hazards, 32(1), pp.1~23.
144.Ercanoglu, M., Kasmer, O., and Temiz, N. (2008), “Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping,” Bulletin of Engineering Geology and the Envioronment, 67(4), pp.565~578.
145.Ermini, L., Catani, F., and Casagli, N. (2005), “Artificial neural networks applied to landslide susceptibility assessment,” Geomorphology, 66(1-4), pp.327~343.
146.Falaschi, F., Giacomelli, F., Federici, P.R., Puccinelli, A, Avanzi, G.D., Pochini, A., and Ribolini, A. (2009), “Logistic regression versus artificial neural networks: Landslide susceptibility evaluation in a sample area River Valley, Italy,” Natural Hazards, 50(3), pp.551~569.
147.Fernandez, C.I., Del Castillo, T.F., El Hamdouni, R., and Montero, J.C. (1999), “Verification of landslide susceptibility mapping: A case study,” Earth Surface Processes and Landforms, 24(6), pp.537~544.
148.Fernadez, T., Irigaray, C., El Hamdouni, R., Chacon, J. (2003), “Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa area Granada,” Spain, Natural Hazards, 30, pp.297~308.
149.Fookes, P.G., Sweeney, M.., Manby, C.N.D., Martin, R.P. (1985), “Geological and geotechnical engineering aspects of low-cost roads in mountainous terrain,” Engineering Geology, 21, pp.1~152.
150.Gao, J., Lo, C.P. (1991), “GIS modeling of influence of topography and morphology on landslide occurrence in Nelson County,” Virginia: GIS/LIS '91 Proceedings, 1, pp.954~963.
151.Garcia-Rodriguez, M.J., Malpica, J.A., Benito, B., and Diaz, M. (2008), “Susceptibility assessment of earthquake-triggered landslides in el salvador using logistic regression,” Geomorphology, 95(3-4), pp.172~191.
152.Gokceoglu, C., and Aksoy, H. (1996), “ Landslide susceptibility mapping of the slopes in the residual soils of the mengen region (turkey) by deterministic stability analyses and image processing techniques,” Engineering Geology, 44(1-4), pp.147-161.
153.Gomes, A., Gaspar, J.L., Goulart, C., Queiroz, G. (2005), “Evaluation of landslide susceptibility of Sete Cidades Volcano S.Miguel Island, Azores,” Natural Hazards and Earth System Sciences, 5, pp.251~257.
154.Gomez, H., Kavzoglu, T. (2005), “Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin,” Venezuela, Engineering Geology, 78, pp.11~27.
155.Gorsevski, P. V., Gessler, P., and Foltz, R.B. (2000), “Spatial prediction of landslide hazard using discriminant analysis and gis,” GIS in the Rockies 2000 Conference and Workshop, Denver, Colorado.
156.Greco, R., Sorriso-Valvo, M., and Catalano, E. (2007), “Logistic regression analysis in the evaluation of mass movements susceptibility: The aspromonte case study, Calabria, Italy,” Engineering Geology, 89(1-2), pp.47~66.
157.Gustavo, C.V., Luis, G.C., Javier, C.M., Jose David, M.G., Emilio, S.O., Luis, A.C. (2004), “Robust support vector method for hyperspectral data classification and knowledge discovery,” IEEE Transactions on Geoscience and Remote Sensing, 42(7), pp.1530–1542.
158.Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. (1999), “Landslide hazard evaluation: a review of current techniques and their application in a multi-Scale study, central Italy,” Geomorphology, 31, pp.181~216.
159.Hamblin, W.K., & Christiansen, E.H. (1998), “Earth's Dynamic Systems,” 8th Ed., Upper Saddle River, NJ: Prentice Hall.
160.Hearn, G.J. (1995), “Landslide and erosion hazard mapping at Ok Tedi Copper Mine,” The Quarterly Journal of Engineering Geology, 28, pp.47~60.
161.Hosmer, D.W., and Lemeshow, S. (2000), “Applied logistic regression (2nd ed.), ” edited by: al., N. A. C. C. e., New York: Wiley.
162.Ives, J.D. & Bovis, M.J. (1978), “Natural hazards maps for land-use planning, San Juan Mountains,” Colorado, U.S.A, Arctic and Alpine Research, 10(2), pp.185~212.
163.Jiang, B. (2004). “Extraction of Spatial Objects from Laser-Scanning data using a clustering technique,”XXth ISPRS Congress, Commission.
164.Jibson, R.W., Harp, E.L., Michael, J.A. (1998), “A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California Area,” USGS Open-File Rep. pp.98~113.
165.Jones, F.O., Embody, D.R., Peterson, W.L. (1961), “Landslides along the Columbia River valley, northeastern Washington,” :U.S. Geological Survey Professional Paper 367, pp.98.
166.Keefer, D.K. (2000), “Statistical analysis of an earthquake-induced landslide distribution - the 1989 Loma Prieta, California event,” Engineering Geology, 58, pp.231~249.
167.Kobashi, S. & Suzuki, M. (1988), “Hazard index for the judgement of slope stability in the Rokko mountain region,” In Proc., Interpraevent 1988, Graz, Austria, l.1, pp.223~233.
168.Koukis, G., & Ziourkas, C. (1991), “Slope instability phenomena in greece:a statistical analysis,” Bulletin of the International Association of Engineering Geology, 43, pp.47~60.
169.Lambe, T.W., Whitman, R.V. (1979), “Soil mechanics,” Wiley, New York, p.553.
170.Lan, H.X., Zhou, C.H., Wang, L.J., Zhang, H.Y., Li, R.H. (2004), “Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed,” Yunnan, China, Engineering Geology, 76, pp.109~128.
171.Lee, S.R., Min, K. (2001), “Statistical analysis of landslide susceptibility at Yongin, Korea,Environment Geology,” 40, pp.1095~1113.
172.Lee, S.R., Chwae, U., Min, K. (2002), “Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea,Geomorphology,” 46, pp.149~162.
173.Lee, C.T., Huang, C.C., Lee, C.F., Pan, K.L., Lin, M.L., Liao, C.W., Lin, P.S., Lin, Y.S., Chang, C.W. (2004), “Landslide susceptibility analysis based on three different triggering events and result comparison,” Proceeding of International Symposium on Landslide and Debris Flow Hazard Assessment, pp.6-1.
174.Lee, S. (2005), “Application and cross-validation of spatial logistic multiple regression for landslide susceptility analysis,” Geosciences Journal, 9(1), pp.63~71.
175.Lee, S., and Evangelista, D.G. (2006), “Earthquake-induced landslide-susceptibility mapping using an artificial neural network,” Natural Hazards and Earth System Sciences, 6(5), pp.687~695.
176.Lee, S., and Sambath, T. (2006), “Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models,” Environmental Geology, 50(6), pp.847~855.
177.Lee, S. (2007), “Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea,” Earth Surface Processes and Landforms, 32(14), pp.2133~2148.
178.Lee, C.T., Huang, C.C., Lee, J.F., Pan, K.L., Lin, M.L., and Dong, J.J. (2008), “Statistical approach to earthquake-induced landslide susceptibility,” Engineering Geology, 100(1-2), pp.43~58.
179.Lee, S.T., Yu, T.T., Peng, W.F., and Wang, C. L. (2010), “Incorporating the effects of topographic amplification in the analysis earthquake-induced landslide hazards using logistic regression,” Nat. Hazards Earth Syst. Sci., 10, 2475~2488.
180.Lee, C.T. & Huang, C.M. (2007), “Neuro-fuzzy-based landslide susceptibility analysis - an example from Central Western Taiwan,” Geophysical Research Abstracts, 9, pp.06849.
181.Leroi, E. (1996), “Landslide Hazard-Risk Maps at Different Scales: Objectives, Tools and Development,” Proceedings of Seventh International Symposium on Landslides, Norway: Trondheim, pp.35~52.
182.Lillesand, T.M. & Kiefer, R.W. (2004), “Remote sensing and image interpretation,” 5th, John Wiley & Sons.
183.Lin, P.S., Lin, J.Y., Hung, J.C., Yang, M.D. (2002), “Assessing debris-flow hazard in a watershed in Taiwan,” Engineering Geology, 66, pp.295~313.
184.Lin, M.L., Tung, C.C. (2003), “A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake,” Engineering Geology, 71, pp.63~77.
185.Liu, J.G., Mason, P.J., Clerici, N., Chen, S., Davis, A., Miao, F., Deng, H., Liang, L. (2004), “Landslide hazard assessment in the Three Gorges area of the Yangtze river using ASTER imagery: Zigui-Badong,” Geomorphology, 61, pp.171~187.
186.Lin, C. W., Liu, S. H., Lee, S. Y., & Liu, C. C.(2006), “Impacts of the chi-chi earthquake on subsequent rainfall-induced landslides in Central Taiwan,” Engineering Geology, 86(2-3), pp. 87-101.
187.Liu, C.C., J. G. Liu, C.W.L., Wu, A.M., Liu, S.H. and Shieh., C.L. (2007), “Image Processing of FORMOSAT-2 data for monitoring South Asia tsunami,” International Journal of Remote Sensing 28, pp.3093~3111.
188.Mathew, J., Jha, V.K., and Rawat, G.S. (2007), “Application of binary logistic regression analysis and its validation for landslide susceptibility mapping in part of Garhwal Himalaya, India,” International Journal of Remote Sensing, 28(10), pp.2257~2275.
189.Newmark, N.M. (1965), “Effects of earthquakes on dams and embankments,” Geotechnique, 15, pp.139~160.
190.Moreiras, S. M. (2005), “Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina,” Geomorphology, 66(1-4), pp.345~357.
191.Morgan, R.P.C. & R.J. Rickson. (1995), “Water Erosion Control. In R.P.C. Morgan and R.J. Rickson (Ed) Slope Stabilization and Erosion Control: A Bioengineering Approach,” E & FN Spon. London, England.
192.Nagarajan, R., Roy, A., Vinod Kumar, R., Mukherjee, A., Khire, M.V. (2000), “Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions,” Bull Eng Geol Env, 58, pp.275~287.
193.Nagarajan, R. (2002), “Rapid assessment procedure to demarcate areas susceptible to earthquake-induced ground failures for environment management-a case study from parts of northeast India,” Bull Eng Geol Env, 61, pp.99~119.
194.Neuland, H. (1976), “A prediction model of landslips,” Catena, 3, pp.215~230.
195.Ohlmacher, G. C., & Davis, J.C. (2003), “Using multiple logistic regression and gis technology to predict landslide hazard in northeast kansas, USA,” Engineering Geology, 69(3-4), pp. 331~343.
196.Perotto-Baldiviezo, H. L., Thurow, T.L., Smith, C.T., isher, R.F., and Wu, X.B. (2004), “GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands, Southern Honduras,” Agriculture Ecosystems & Environment, 103(1), pp.165~176.
197.Polemic, M., Sdao, F. (1999), “The role of rainfall in the landslide hazard: the case of the Avigliano urban area (Southern Apennines, Italy),” Engineering Geology, 53, pp.297~309.
198.Popescu, M.E. (2002), “Landslide causal factors and landslide remedial options,” Keynote Lecture, Proceedings 3rd International Conference on Landslides, Slope Stability and Safety of Infra-Structures, Singapore, pp.61~81.
199.Pradhan, B. (2010), “Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia,” Advances in Space Research, 45(10), pp. 1244~1256.
200.Remondo, J., Gonzalez-diez, A., Teran, J.R.D.D., Cendrero, A. (2003), “Landslide Susceptibility models utilizing spatial data analysis techniques. A case study from the Lower Deba Valley,” Guipuzcoa Spain,Natural Hazards, 30, pp.267~279.
201.Repaka, R. S., Truax, D., Kolstad, E., and Hara, C. (2004), “Comparing Spectral and Object Based Approaches for Classification and Transportation Feature Extraction from High Resolution Multispectral Imagery,” ASPRS Annual Conference Proceedings 23-28 May, Denver, Colorado, pp.204~215.
202.Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P., Baum, R.L., Michael, J.A. (2006), “Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy,” Landslides, 3, pp.181~194.
203.Santacana, N., Baeza, R., Corominas, J., Paz, A.D.(2003) , “Marturia J,A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lille area Eastern Pyrenees, Spain,” Natural Hazards, 30, pp.281-295.
204.Sharpe, C.F.S. (1938), “Landslide and Related Phenomena,” New York: Cloumbia University Press.
205.Sidle, R.C., Pearce, A.J., O'Loughlin, C.L. (1985), “Hillslope stability and land use,” Water Resources Monograph, 11, pp.140.
206.Singh, S., Haddon, J., and Markou, M. (2001), “Nearest-neighbour classifiers in natural scene analysis,” Pattern Recognition, 34(8), pp.1601~1612.
207.Stafford, P., Berrill, J., and Pettinga, J. (2009), “New predictive equations for arias intensity from crustal earthquakes in New Zealand,” Journal of Seismology, 13(1), pp.31~52.
208.Stevenson, P.C. (1977), “An empirical method for the evaluation of relative landslide risk,” Int. Ass. Eng. Geol. Bull., 16, pp.69~72.
209.Suzen, M.L., Doyuran, V. (2004), “A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate,” Environmental Geology, 45, pp.665-679.
210.Terzaghi, K. (1950), “Mechanism of landslides,” In: Paige, S. (Ed.), Application of Geology to Engineering Practice (Berkey Volume), Geological Society of America, New York, pp. 83-123.
211.Turner A.K. & Schuster R.L. (1996), “Landslides: investigation and mitigation,” Washington, D.C.:National Research Council.
212.The National Academies, (2004), "Partnerships for Reducing Landslide Risk: Assessment of the National Landslide Hazards Mitigation Strategy",pp.33.
213.van Westen, C.J. (1992), “Medium scale landslide hazard analysis using a PC based GIS: A case study from Chinchina, Colombia,” In Proc., ler Simposio Internacional sobre Sensores Remotes Sistemas de Informacion Geografica (SIG) para el Estudio de Riesgos Naturales, Bogota, Colombia (J.B. Alzate, ed.), Instituto Geografico Agustin Codazzi, Bogota, .2, pp.20.
214.van Westen C.J., Rengers, N., Terlien, M.T.J., Soeters R. (1997), “Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation,” Geol Rundsch, 86, pp.404~414.
215.van Westen C.J.(2003), “Use of geomorphological information in indirect landslide susceptibility assessment,” Natural Hazards, 30, pp.399~419.
216.van Westen, C.J., Van Asch, T.W.J., Soeters, R. (2006), “Landslide hazard and risk zonation – why is it still so difficult?,” Bulletin of Engineering Geology and Environment, 65, pp.167~184.
217.Vahidnia, M.H., Alesheikh, A.A., Alimohammadi, A., and Hosseinali, F. (2009), “Landslide hazard zonation using quantitative methods in GIS,” International Journal of Civil Engineering, 7(3), pp.176~189.
218.Varnes, D.J. (1978), “Slope movement types and processes,” In: Special Report 176: Landslides: Analysis and Control (Eds: Schuster, R. L. & Krizek, R. J.), Transportation and Road Research Board, National Academy of Science, Washington D. C., pp.11~33.
219.Verbyla, D. L. (1995), “Satellite remote sensing of natural resources,” Boca Raton, USA: Lewis Publishers/CRC Press LLC, ISBN1566701074 224 pp.
220.Wang, H.B., Sassa, K., and Xu, W.Y. (2007), “Assessment of landslide susceptibility using multivariate logistic regression: A case study in Southern Japan,” Environmental & Engineering Geoscience, 1 (2), pp.183~192.
221.Yilmaz, I. (2009), “Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from kat landslides (tokat-turkey),” Computers & Geosciences, 35(6), pp.1125~1138.
222.Zezere, J. L., Reis, E., Garcia, R., Oliveira, S., Rodrigues, M. L.,Vieira, G., and Ferreira, A.B.(2004), “Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal),” Natural Hazards and Earth System Sciences, 4(1), pp.133-146.
223.Zhao, L., Haas, W.Q, Quek , P. C., & Liew, S.C. (1997), “Landuse Study of the Sentosa Island using SPOT images,” IEEE international, (2), pp.963- 965.