簡易檢索 / 詳目顯示

研究生: 鄭稟昱
Cheng, Pin-Yu
論文名稱: 應用K維樹的迭代最近點演算法來實現三維空間點雲之拼疊
Alignment of 3D Point Sets Using KD Tree-Based Iteration Closest Point Algorithm
指導教授: 連震杰
Lien, Jenn-Jier
共同指導教授: 郭淑美
Guo, Shu-Mei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 58
中文關鍵詞: K維樹迭代最近點演算法萊文貝格-馬夸特方法隨機抽樣一致法3D點雲拼疊逆向工程
外文關鍵詞: ICP, KD Tree, Leivenberg-Marquat, RANSAC, 3D point sets Alignment, Reverse Engineering
相關次數: 點閱:150下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於3D列印(3D Printing)技術的成熟,使得相關設備的應用也逐漸普及。以往作為3D 列印機的資料來源的接觸式3D掃描設備,不但掃描速度過慢,有些物體(EX: 器官,精密儀器…等) 並不能以接觸的方式取得資料。本實驗室採用非接觸式的3D掃描設備,DLP(Digital Light Process),改善了接觸式3D掃描設備的缺點。但非接觸式3D掃描設備也存在一個隱憂---無法一次掃描整個物體所有的面。非接觸式掃描設備,須將一面一面的點雲集合拼疊,在一次次的拼疊過程中,容易產生誤差。本研究致力於將非接觸式掃描設備---DLP掃描完的各個面之點雲集合,以應用K維樹的迭代最近點演算法,拼疊出一個完整的立體點雲,以便後續3D列印機使用。本研究比較了四種不同拼疊方法,迭代最近點演算法,Levenberg-Marquardt迭代最近點演算法,RANSAC Trimmed迭代最近點演算法,Levenberg-Marquardt Trimmed迭代最近點演算法。並利用四種不同模型來做不同方法的結果好壞比較(包括拼疊的速度,拼疊的誤差大小等等)。

    In recent years, due to the maturity of 3D Printing technology, the application of related equipment has also been gradually popularized. In the past, as a contact-type 3D scanning device for 3D printers, not only the scanning speed was too slow, but some objects (EX: organs, precision instruments, etc.) could not obtain information with contact manner. Our lab uses non-contact 3D scanning equipment, DLP (Digital Light Process), to improve the shortcomings of contact-type 3D scanning equipment. However, there is also a hidden disadvantage with non-contact 3D scanning equipment - it is impossible to scan all the surfaces of an entire object at a time. Non-contact scanning equipment, it must align each side of the point cloud, again and again, in the process of stacking is easy to make error. This research is devoted to the collection of non-contact scanning equipment --- DLP scanned each point of the surface of the collection to apply KD Tree-Based Iterative Closest Point Algorithm, align a complete three-dimensional point cloud for the subsequent 3D column Printer use. In this study, we compare four different methods of alignment, Iterative Closest Point Algorithm, Levenberg-Marquardt Iterative Closet Point Algorithm, RANSAC Trimmed Iterative Closest Point Algorithm, and Levenberg-Marquardt Trimmed Iterative Closest Point Algorithm. And use four different models to compare the results of different methods (including stacking speed, stacking error size, etc.).

    摘要...................................................IV Abstract................................................V 誌謝...................................................VI Table of Contents.....................................VII List of Figures........................................IX List of Tables........................................XII Chapter 1. Introduction............................1 1.1 Motivation......................................1 1.2 Related Research................................3 1.3 Paper Contribution..............................4 Chapter 2. Random Sample Consensus KD Tree-Based Iterative Closest Point Algorithm.......................7 2.1 KD Tree-Based Iterative Closest Point Algorithm.7 2.2 Least Trimmed Squares..........................14 2.3 Random Sample Consensus........................14 Chapter 3. Levenberg-Marquardt KD Tree-Based Iterative Closest Point Algorithm......................18 3.1 Levenberg – Marquardt..........................19 Chapter 4. Experimental Results and Comparison....25 4.1 Data Collection................................25 4.2 Using Different Models to Compare Different Methods........................................30 Chapter 5. Conclusion and Future Works............55 5.1 Conclusion.....................................55 5.2 Future Works...................................55 References.............................................57

    [1] H. Andresson, "Vision Aided 3D Laser Scanner Based Registration", ROC. European Conference on Mobile Robots: ECMR, pp192-197, 2007.
    [2] P. Besl, N. McKay, “A Method for Registration of 3-D Shapes”, IEEE Transactions on Pattern Analysis and Machine Intelligence 14,239–256,1992
    [3] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with The OpenCV Library. O'Reilly Media, 2008.
    [4] D. Chetverikov, “Fast Neighborhood Search in Planar Point Set”, Pattern Recognition Letters 12,409–412,1991
    [5] D. Chetverikov, D. Stepanov, P. Krsek: “Robust Euclidean Alignment of 3D Point Sets: The Trimmed Iterative Closest Point Algorithm”, Image and Vision Computing 23, 299–309. 8, 9,2005
    [6] M. Fischler, R. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting Applications to Image Analysis and Automated Cartography", Proc. Image Understanding Workshop, pp. 71-88, 1980-Apr.
    [7] A.W. Fitzgibbon, “Robust Registration of 2D and 3D Point Sets”, in Proceedings of The British Machine Vision Conference, 2001.
    [8] M. Gross and H. Pfister, Point-Based Graphics, Morgan Kaufmann Pub, 2007.
    [9] H. Kjer, J. Wilm, “Evaluation of Surface Registration Algorithms for PET Motion Correction”, Bachelor Thesis, Technical University of Denmark, 2010.
    [10] M.E. Mortenson, Geometric Modeling. Wiley, New York,1985
    [11] A. Nuchter, K. Lingemann, and J. Hertzberg, “Cached K-D Tree Search for ICP Algorithms,” in Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM), 2007.
    [12] L. Piegl, W. Tiller, The NURBS Book (Monographs in Visual Communication) (Second ed.), Springer-Verlag, New York ,1997
    [13] Z. Zhang, “A Flexible New Technique for Camera Calibration”,
    [14] IEEE TPAMI,22(11): 1330–1334,2000
    [15] https://ccjou.wordpress.com/2009/09/01/%E5%A5%87%E7%95%B0%E5%80%BC%E5%88%86%E8%A7%A3-svd/
    [16] https://docs.opencv.org/2.4.13/modules/refman.html
    [17] http://pointclouds.org/
    [18] http://www.sciencedirect.com/science/article/pii/S092523121200728X
    [19] https://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BA%A6%E4%B8%8B%E9%99%8D%E6%B3%95

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE