簡易檢索 / 詳目顯示

研究生: 李泉佑
Li, Chuan-Yu
論文名稱: 考慮樑柱接頭與曲率相似度之構架結構倒塌資料庫
The establishment of collapsed structure database factoring beam-column joints and curvature indices
指導教授: 侯琮欽
Hou, Tsung-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 165
中文關鍵詞: 倒塌模擬相似度演算法建築資訊模型搜索與救援
外文關鍵詞: search and rescue, building information modeling, similarity algorithm, database integrity
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位處歐亞板塊及菲律賓海板塊交界,因板塊相互擠壓導致地震頻繁,年間平均發生214次有感地震,造成諸多生命財產損失。地震災害後首要任務為搶救受困者,若能在黃金72小時內有效地進行搜索與救援(search and rescue, SAR)便能大幅降低傷亡人數。因此本研究考慮利用建築資訊模型結合災後搜救,建立不同模型之倒塌模式資料庫,設立有效指標驗證以外部構件資訊預測內部構建的可行性並將各資料庫中倒塌模式分類,主要流程為建立6種不同構架之建築資訊模型,匯入Blender中並以其物理引擎Bullet Constraints Builder進行倒塌模擬,參考台灣地區近十年實際地震數據設計人工地震參數,分別藉由模型之外部和內部構件之歐式距離相似度、夾角餘弦相似度、曲率相似度及結合前三者之綜合相似度作為指標進行線性分析,利用演算法計算所得相關係數以及視覺化方式確認外部構件資訊預測內部構件準確性,最終設立相似度門檻值將資料庫中案例進行分類,去除相似度高倒塌案例,使資料庫中留存案例皆為相異倒塌模式,以提高資料庫效能。
    本研究線性分析部分成果以散點圖呈現,證明出四種相似度指標皆能夠有效驗證模型各案例外部構件資訊和內部構件相關性,並且皆能成功判別外部結構資訊相似而內部結構相異之案例,證明四種指標皆有能力分類資料庫中相異倒塌模式。最後將各指標設置門檻值分類資料庫中案例以增加資料庫效能,各模型最終獲得資料庫數量分布於213 ~ 507筆間,由模型三、四比較後發現資料庫數量主要取決於幾何形狀排列方式,在視覺化模型案例後確認其樣式十分接近現實,尤其於高樓層模型,僅一層樓案例較有大量物件飛離之特殊案例,證明本研究建立之模型擁有足夠擬真度。

    After an earthquake disaster, the first task is to rescue the trapped people. Therefore, this research will use the method of post-disaster search and rescue combined with building information model to establish the collapse mode database of different models. Use the Euclidean distance, cosine, curvature and comprehensive similarity as indicators to carry out linear analysis to confirm the accuracy of external prediction and internal construction. Then, a similarity threshold is established to classify the cases in the database, make all the remaining cases in the database become different collapse modes, so as to improve the performance of the database.
    The results of this study proves that the four similarity indicators can successfully verify the linear relationship between the external and internal structures of each case of the model, and they can successfully show that the cases which external structure information is similar but the internal structure is not similar. Finally, the threshold value of each indicator is set to classify the cases in the database to increase the integrity of the database. The number of databases found that the number of databases is mainly determined by the arrangement of geometric shapes. It is very close to reality after visualizing the model case, especially in the high-rise model, which proves that the model established in this study has sufficient fidelity.

    摘要 I The establishment of collapsed structure database factoring beam-column joints and curvature indices II 誌謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容與流程 2 第二章 文獻回顧 4 2.1 點雲資料(Point cloud data) 4 2.1.1 點雲資料物件辨識 4 2.1.2 Scan-to-BIM 5 2.2 建築資訊模型 9 2.3 數值分析(Numerical Analysis) 11 2.3.1 有限元素法(Finite Element Method) 11 2.3.2 離散元素法(Discrete Element Method) 13 2.3.3 應用元素法(Applied Element Method) 15 2.4 相似度計算(Similarity Measurement) 16 2.4.1 歐氏距離(Euclidean Distance) 17 2.4.2 曼哈頓距離(Manhattan Distance) 18 2.4.3 切比雪夫距離(Chebyshev Distance) 19 2.4.4 明氏距離(Minkowski Distance) 20 2.4.5 漢明距離(Hamming Distance) 20 2.4.6 餘弦相似度(Cosine Similarity) 21 2.4.7 皮爾遜相似度(Pearson Similarity) 21 2.5 數據正規化(Normalization)、標準化(Standardization) 22 2.5.1 最小值最大值正規化(Min-Max Normalization) 22 2.5.2 Z-score標準化(Z-Score Standardization) 23 2.5.3 對數正規化(Logistic Normalization) 23 2.5.4 極值絕對值正規化(MaxAbs Normalization) 24 2.5.5 RobustScaler 標準化(RobustScaler Standardization) 24 2.6 文獻回顧小結 24 第三章 研究方法 25 3.1 研究流程概述 25 3.2 建模工具Blender2.79 27 3.3 物理引擎Bullet Constraints Builder 27 3.3.1 預處理階段 28 3.3.2 倒塌模擬階段 28 3.3.3 後處理階段 29 3.4 構件參數設定 29 3.4.1 模型建立 31 3.5 倒塌模擬 32 3.5.1 人工地震 32 3.5.2 倒塌模擬資料庫建立 33 3.6 相似度演算法 34 3.6.1 歐氏距離相似度 dk 34 3.6.2 餘弦相似度 dotk 35 3.6.3 曲率相似度 ck 36 3.6.4 綜合相似度 mk 37 3.7 倒塌模式資料庫 37 3.7.1 外部與內部構建分析 37 3.7.2 資料庫效能提升 37 第四章 成果分析與討論 38 4.1 模型擬真性 38 4.2 相似度指標 39 4.2.1 歐式距離相似度 39 4.2.2 夾角餘弦相似度 43 4.2.3 空間曲率相似度 46 4.2.4 綜合相似度 49 4.3 資料庫效能 54 4.3.1 模型一 54 4.3.2 模型二 55 4.3.3 模型三 56 4.3.4 模型四 57 4.3.5 模型五 57 4.3.6 模型六 58 4.3.7 完整性總結 59 第五章 結論與建議 60 5.1 結論 60 5.2 建議 62 參考文獻 63 附錄A 69 模型1構件清單 69 模型2構件清單 74 模型3構件清單 85 模型4構件清單 96 模型5構件清單 117 模型6構件清單 134

    [1] Adán, A., Quintana, B., Prieto, S. A., and Bosché, F., Scan-to-BIM for ‘secondary’building components. Advanced Engineering Informatics, 37: p. 119-138, 2018.
    [2] Arora, H., R. Singh, and G.S. Brar, Prediction of temperature distribution and displacement of carbon steel plates by FEM. Materials Today: Proceedings, 18: p. 3380-3386, 2019.
    [3] Artus, M. and C. Koch, State of the art in damage information modeling for RC bridges–a literature review. Advanced Engineering Informatics, 46: p. 101171, 2020.
    [4] Badenko, V., Fedotov, A., Zotov, D., Lytkin, S., Volgin, D., Garg, R., and Liu, M., Scan-to-BIM methodology adapted for different application. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42: p. 1-7, 2019.
    [5] Banfi, F., R. Brumana, and C. Stanga, Extended reality and informative models for the architectural heritage: from scan-to-BIM process to virtual and augmented reality, Virtual Archaeology Review, 10(21): p.14-30, 2019.
    [6] Bloch, T., R. Sacks, and O. Rabinovitch, Interior models of earthquake damaged buildings for search and rescue. Advanced Engineering Informatics, 30(1): p. 65-76, 2016.
    [7] Bonger, A. D., Hosoda, A., Salem, H., and Kaba, K., Numerical simulation of rupture protrusion of vertically tightened pc steel bars using applied element method. Internet Journal of Society for Social Management Systems, 12(1): p. 110, 2019.
    [8] Bosché, F., Ahmed, M., Turkan, Y., Haas, C. T., and Haas, R., The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components. Automation in Construction, 49: p. 201-213, 2015.
    [9] Capilleri, P., Ferraiolo, F., Motta, E., Scotto, M., and Todaro, M., Static and dynamic analysis of two mechanically stabilized earth walls. Geosynthetics International, 26(1): p. 26-41, 2019.
    [10] Chen, F., J. Liu, and J. Chen, Earthquake Disaster Rescue Model Based on Complex Adaptive System Theory. Complexity, 2021.
    [11] Christy, D.L., T.M. Pillai, and P. Nagarajan. Thin plate element for applied element method. Structures,22:p.1-12, 2019.
    [12] Clough, R.W. ,The finite element method in plane stress analysis. Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh Pa., Sept. 8 and 9, 1960.
    [13] Costin, A., Adibfar, A., Hu, H., and Chen, S. S., Building Information Modeling (BIM) for transportation infrastructure–Literature review, applications, challenges, and recommendations. Automation in construction, 94: p. 257-281, 2018.
    [14] Cundall, P.A. and O.D. Strack, A discrete numerical model for granular assemblies. Geotechnique, 29(1): p. 47-65, 1979.
    [15] Daniel, Ľ., Kortiš, J., Decký, M., Pisca, P., and Fabo, P., Development of the FEM wheel-soil model for the design of flexible pavements. MATEC Web of Conferences,196:p.6, 2018.
    [16] Duy, H.T., A static analysis of nonuniform column by stochastic finite element method using weighted integration approach. Tạp chí Khoa học Giao thông vận tải, 71(4): p. 359-367, 2020.
    [17] El-desoqi, M., M. Ehab, and H. Salem, Progressive collapse assessment of precast reinforced concrete beams using applied element method. Case Studies in Construction Materials, 13: p. e00456, 2020.
    [18] Eraky, A., S.A. A Mustafa, and M. Badawy, Structural Analysis Using Applied Element Method: A Review. Egyptian Journal for Engineering Sciences and Technology, 34(1): p. 16-27, 2021.
    [19] Fita, J.L., G. Besuievsky, and G. Patow, Earthquake Simulation on Ancient Masonry Buildings. Journal on Computing and Cultural Heritage (JOCCH), 13(2): p. 1-18, 2020.
    [20] Grunwald, C., Khalil, A. A., Schaufelberger, B., Ricciardi, E. M., Pellecchia, C., De Iuliis, E., and Riedel, W., Reliability of collapse simulation–Comparing finite and applied element method at different levels. Engineering Structures, 176: p. 265-278, 2018.
    [21] Gu, X., Wang, X., Yin, X., Lin, F., and Hou, J., Collapse simulation of reinforced concrete moment frames considering impact actions among blocks. Engineering Structures, 65: p. 30-41, 2014.
    [22] Guo, N. and J. Zhao, A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. International Journal for Numerical Methods in Engineering, 99(11): p. 789-818, 2014.
    [23] Hamano, T., M. Onosato, and F. Tanaka. Performance comparison of physics engines to accelerate house-collapsing simulations. 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR),2016.
    [24] He, H., Zheng, J., Sun, Q., and Li, Z., Simulation of realistic particles with bullet physics engine. E3S Web of Conferences,92:p.5 2019.
    [25] Hu, D., Li, S., Chen, J., and Kamat, V. R., Detecting, locating, and characterizing voids in disaster rubble for search and rescue. Advanced Engineering Informatics, 42: p. 100974, 2019.
    [26] INACHUS, T., Methodological Solutions for Integrated Wide Area Situation Awareness and Survivor Localisation to Support Search and Rescue Teams. FP7 research project, grand, (607522), 2017.
    [27] Jihong, Y. and Q. Nian, Progressive collapse simulation based on DEM for single-layer reticulated domes. Journal of Constructional Steel Research, 128: p. 721-731, 2017.
    [28] Kabeyama, Y., S. Fujimura, and S. Okazaki, Simulation Of The Collapse Process Of Infrastructure Using General-purpose Physics Engine. GEOMATE Journal, 18(70): p. 191-196, 2020.
    [29] Kawecki, B. and J. Podgórski, 3D ABAQUS simulation of bent softwood elements. Archives of Civil Engineering, 66(3), 2020.
    [30] Kazado, D., M. Kavgic, and R. Eskicioglu, Integrating building information modeling (BIM) and sensor technology for facility management. Journal of Information Technology in Construction (ITcon), 24(23): p. 440-458, 2019.
    [31] Khan, N., Ali, A. K., Van-Tien Tran, S., Lee, D., and Park, C., Visual language-aided construction fire safety planning approach in building information modeling. Applied Sciences, 10(5): p. 1704, 2020.
    [32] Khanmohammadi, S., M. Arashpour, and Y. Bai. Applications of building information modeling (BIM) in disaster resilience: Present status and future Trends. Proceedings of the International Symposium on Automation and Robotics in Construction,37:p.1380-1387 2020.
    [33] Kieckhefen, P., Pietsch, S., Dosta, M., and Heinrich, S., Possibilities and limits of computational fluid dynamics–discrete element method simulations in process engineering: A review of recent advancements and future trends. Annual review of chemical and biomolecular engineering, 11: p. 397-422, 2020.
    [34] Knight, E. E., Rougier, E., Lei, Z., Euser, B., Chau, V., Boyce, S. H., Froment, M., HOSS: an implementation of the combined finite-discrete element method. Computational Particle Mechanics, 7(5): p. 765-787, 2020.
    [35] Lee, J.H., J.J. Park, and H. Yoon, Automatic bridge design parameter extraction for scan-to-BIM. Applied Sciences, 10(20): p. 7346, 2020.
    [36] Li, X., Li, H., Liu, L., Liu, Y., Ju, M., and Zhao, J., Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. International Journal of Rock Mechanics and Mining Sciences, 127: p. 104219, 2020.
    [37] Liu, J., Xu, D., Hyyppä, J., and Liang, Y., A survey of applications with combined BIM and 3D laser scanning in the life cycle of buildings. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: p. 5627-5637, 2021.
    [38] Lu, Z., X. He, and Y. Zhou, Discrete element method-based collapse simulation, validation and application to frame structures. Structure and Infrastructure Engineering, 14(5): p. 538-549, 2018.
    [39] Ma, L., R. Sacks, and R. Zeibak-Shini, Information modeling of earthquake-damaged reinforced concrete structures. Advanced Engineering Informatics, 29(3): p. 396-407, 2015.
    [40] Ma, L., Sacks, R., Zeibak-Shini, R., Aryal, A., and Filin, S., Preparation of synthetic as-damaged models for post-earthquake BIM reconstruction research. Journal of computing in civil engineering, 30(3), 2016.
    [41] Malomo, D., R. Pinho, and A. Penna, Using the applied element method for modelling calcium silicate brick masonry subjected to in‐plane cyclic loading. Earthquake Engineering & Structural Dynamics, 47(7): p. 1610-1630, 2018.
    [42] Meguro, K. and H. Tagel-Din, Applied element method for structural analysis theory and application for linear materials. Doboku Gakkai Ronbunshu, 2000(647): p. 31-45, 2000.
    [43] Meguro, K. and H. Tagel-Din, Applied element simulation of RC structures under cyclic loading. Journal of Structural Engineering, 127(11): p. 1295-1305, 2001.
    [44] Meguro, K. and H.S. Tagel-Din, Applied element method used for large displacement structural analysis. Journal of Natural Disaster Science, 24(1): p. 25-34, 2002.
    [45] Orr, A., Damage and vulnerability analysis of debris slide impacts to buildings through analytical methods. University of Twente, 2019
    [46] Pepe, M., Costantino, D., Alfio, V. S., Restuccia, A. G., and Papalino, N. M., Scan to BIM for the digital management and representation in 3D GIS environment of cultural heritage site. Journal Of Cultural Heritage, 50: p. 115-125, 2021.
    [47] Rocha, G., Mateus, L., Fernández, J., and Ferreira, V., A scan-to-BIM methodology applied to heritage buildings. Heritage, 3(1): p. 47-67, 2020.
    [48] Sebacher, B., Toma, S. A., Lupoae, M., and Pura, M. L., On the Modelling of Urban Infrastructure Deformation Profiles Using the Applied Element Method and Multiple Hypothesis Testing. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018.
    [49] So, E., H. Baker, and R. Spence, Casualty estimation through assessment of volume loss and external debris spread in building collapse. Proceedings of the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece, 2018.
    [50] Tang, S., Shelden, D. R., Eastman, C. M., Pishdad-Bozorgi, P., and Gao, X., A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Automation in Construction, 101: p. 127-139, 2019.
    [51] Tiira, V., Creating a training game for Urban Search and Rescue Personnel, FP7 research project, grand, (607522), 2016.
    [52] Torabi, M. and V. Borujerdian, N‌o‌n-l‌i‌n‌e‌a‌r F‌e‌m D‌y‌n‌a‌m‌i‌c A‌n‌a‌l‌y‌s‌i‌s O‌f 3d S‌t‌e‌e‌l F‌r‌a‌m‌e W‌i‌t‌h I‌n‌t‌e‌r‌m‌e‌d‌i‌a‌t‌e D‌u‌c‌t‌i‌l‌i‌t‌y U‌n‌d‌e‌r C‌r‌a‌s‌h L‌o‌a‌d‌i‌n‌g. Sharif Journal of Civil Engineering,35-2:p.23-31 2019.
    [53] Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L., Stiffness and deflection analysis of complex structures. Journal of the Aeronautical Sciences, 23(9): p. 805-823, 1956.
    [54] Xu, Z., Zhang, H., Wei, W., and Yang, Z., Virtual scene construction for seismic damage of building ceilings and furniture. Applied Sciences, 9(17): p. 3465, 2019.
    [55] Xue, S., Hu, L., Guanghui, W., and Yaoming, Z., Training effectiveness evaluation of helicopter emergency relief based on virtual simulation. Chinese Journal of Aeronautics, 31(10): p. 2000-2012, 2018.
    [56] Yang, S. H., Woo, K. S., Kim, J. J., and Ahn, J. S., Finite element analysis of RC beams by the discrete model and CBIS model using LS-DYNA. Advances in Civil Engineering, 2021,2021
    [57] Yeom, S. B., Ha, E.-S., Kim, M.-S., Jeong, S. H., Hwang, S.-J., and Choi, D. H., Application of the discrete element method for manufacturing process simulation in the pharmaceutical industry. Pharmaceutics, 11(8): p. 414, 2019.
    [58] Zaid, M., S. Mishra, and K. Rao, Finite element analysis of static loading on urban tunnels. Geotechnical characterization and modelling, p. 807-823, 2020
    [59] Zeibak-Shini, R., Sacks, R., Ma, L., and Filin, S., Towards generation of as-damaged BIM models using laser-scanning and as-built BIM: First estimate of as-damaged locations of reinforced concrete frame members in masonry infill structures. Advanced Engineering Informatics, 30(3): p. 312-326, 2016.
    [60] Zhao, L., Zhang, H., Wang, Q., and Wang, H., Digital-Twin-Based evaluation of nearly zero-energy building for existing buildings based on scan-to-bim. Advances in Civil Engineering, 2021:p.1-11,2021
    [61] Zheng, Z., Tian, Y., Yang, Z., and Lu, X., Hybrid framework for simulating building collapse and ruin scenarios using finite element method and physics engine. Applied Sciences, 10(12): p. 4408, 2020.
    [62] 甘名倫, 構架結構倒塌模式庫建立. 國立成功大學土木研究所碩士論文:台南. 2020
    [63] 吳承晏, 由散亂點雲自動辨識結構基本物件–辨識率與精確度. 國立成功大學土木研究所碩士論文:台南. 2018.
    [64] 林育正, 點雲建築資訊模型倒塌模式生成與預測. 國立成功大學土木研究所碩士論文:台南. 2019.

    無法下載圖示 校內:2027-07-20公開
    校外:2027-07-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE