| 研究生: |
吳泓寬 Wu, Hung-Kuan |
|---|---|
| 論文名稱: |
導入重要性取樣法於分位數估計之完全連續選擇程序 Fully Sequential Selection Procedures with Importance Sampling in Quantile Estimation |
| 指導教授: |
蔡青志
Tsai, Shing-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 分位數選擇 、排序與選擇程序 、變異數縮減技術 、重要性取樣法 、樣本平均近似法 |
| 外文關鍵詞: | Quantile Selection, Ranking & Selection, Variance Reduction, Importance Sampling, Sample Average Approximation |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生活中的問題隨著科技發展越來越複雜,當問題難以使用數學模式分析時,利用系統模擬的技術,能夠放寬許多不合理假設以建立模型幫助決策。模擬領域中的排序與選擇程序,在問題的候選解不多時,幫助決策者選擇最佳系統。而排序與選擇程序在估計變異較大的系統績效表現值時,容易面臨抽樣過多及運算時間長等問題;模擬領域中的變異縮減技術則可改善此問題,以變異數較小的估計量取代原本的平均數估計量,降低平均抽樣數,增加完全連續選擇程序之效率。在過去文獻中,以分位數作為選擇指標的選擇程序多為兩階段的選擇程序,且皆需要面對分位數估計量具有較大偏誤,或是該估計量不為常態分配等問題,且當欲估計的分位數為極端分位數時,因有效的樣本不易取得,同樣也面臨抽樣數過高等問題。本研究使用分位數的漸進性質並將其引入完全選擇程序中,且在估計極
端分位數的例子中使用重要性取樣法降低變異,幫助程序減少抽樣數。
在本研究中使用Bahadur-Ghosh representation 計算分位數的漸進變異數,並利用其中央極限定理將分位數估計量使用於完全連續程序中;接著使用模擬最佳化中的樣本平均近似法估計重要性取樣法的參數 ,利用當前程序下產生的樣本定義分位數的漸進變異數,將其表示為 的函數,將其作為最佳化的目標式進行求解,最後將使用重要性取樣法的分位數估計量導入完全連續選擇程序中。
經由實驗發現本研究提出之FSP-CMC ,其平均抽樣數比過往文獻更少,並同時能符合信心水準。而導入了重要性取樣法的FSP-IS 程序則在估計極端分位數的實驗中取得了良好的變異減免效果,其所需要的樣本數遠低於FSP-CMC 程序。
In past studies, Ranking and Selection Procedures (R&S) considering quantile usually use sample mean and variance as the point estimators. These procedures may not be efficient in terms of the average number of samples since quantile estimator has large variance and bias, especially when extreme quantiles are under consideration.
We propose a Fully Sequential Selection Procedure (FSP) algorithm with asymptotic variance of the quantile estimator, which do not need separate samples into batches.
This procedure preforms well since the point estimator has low bias. Moreover, we propose a FSP with Importance Sampling (IS) that updates the IS parameter when we take more samples. To update the parameter, we use stochastic optimization approach, which is Sample Average opproximation (SAA). The numerical experiments indicate that the probability of correct selection (PCS) can meet the desired confidence level, and variance reduction is achieved since average number of samples (ANS) is significantly decreased.
蔡承濂(2017). 以更有效率之方式結合控制變量於完全連續選擇程序. 成功大學工業與資訊管理學系碩士學位論文.
葉韋呈(2019). 使用非線性控制變量之完全連續選擇程序. 成功大學工業與資訊管理學系碩士學位論文.
Ahamed, T. P., Borkar, V. S., & Juneja, S. (2006). Adaptive importance sampling technique for Markov chains using stochastic approximation. Operations Research, 54(3),489–504.
Bahadur, R. R. (1966). A Note on Quantiles in Large Samples. The Annals of Mathematical Statistics, 37(3), 577–580.
Batur, D., & Choobineh, F. (2010). A quantile-based approach to system selection. European Journal of Operational Research, 202(3), 764–772.
Batur, D., & Choobineh, F. (2012). Stochastic dominance based comparison for system selection. European Journal of Operational Research, 220(3), 661–672.
Bechhofer, R. E. (1954). A Single-Sample Multiple Decision Procedure for Ranking Means of Normal Populations with known Variances. The Annals of Mathematical Statistics, 25(1), 16–39.
Bekki, J. M., Fowler, J. W., Mackulak, G. T., & Nelson, B. L. (2007). Using quantiles in ranking and selection procedures. In Proceedings - Winter Simulation Conference, (pp.1722–1728). WSC.
Bloch, D. A., & Gastwirth, J. L. (1968). On a Simple Estimate of the Reciprocal of the Density Function. Annals of Mathematical Statistics, 39(3), 1083–1085.
Bofingeb, E. (1975). Estimation of a density function using order statistics. Australian Journal of Statistics, 17(1), 1–7.
Chu, F., & Nakayama, M. K. (2010). Confidence intervals for quantiles and value-at-risk when applying importance sampling. In Proceedings - Winter Simulation Conference (pp. 2751–2761).
Chu, F., & Nakayama, M. K. (2012). Confidence intervals for quantiles when applying variance-reduction techniques. ACM Transactions on Modeling and Computer Simulation, 22(2), 1–25.
David, H. A., & Nagaraja, H. N. (2003). Order Statistics. Wiley Series in Probability and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc.
Eckman, D. J., & Feng, M. (2018). Green simulation optimization using likelihood ratio estimators. In Proceedings - Winter Simulation Conference, (pp. 2049–2060). Institute of Electrical and Electronics Engineers Inc.
Egloff, D., & Leippold, M. (2010). Quantile estimation with adaptive importance sampling. Annals of Statistics, 38(2), 1244–1278.
Feng, M., & Staum, J. (2017). Green simulation: Reusing the output of repeated experiments. ACM Transactions on Modeling and Computer Simulation, 27(4), 1–28.
Ghosh, J. K. (1971). A New Proof of the Bahadur Representation of Quantiles and an Application. The Annals of Mathematical Statistics, 42(6), 1957–1961.
Glynn, P. W. (1996). Importance Sampling for Monte Carlo Estimation of Quantiles. In Proceedings of the Second International Workshop on Mathematical Methods in Stochastic Simulation and Experimental Design, (pp. 180–185). Mathematical methods in stochastic simulation and experimental design: proceedings of the 2nd St.Petersburg Workshop on Simulation, St. Petersburg, June 18 - 21, 1996.
Goldsman, D., Nelson, B., & Schmeiser, B. (1991). Methods for selecting the best system (for simulation). In B. Nelson, W. Kelton, & G. Clark (Eds.) Proceedings - Winter Simulation Conference, (pp. 177–186). Institute of Electrical and Electronics Engineers (IEEE).
Gupta, S. S. (1956). On a decision rule for a problem in ranking means. Ph.d. dissertation, University of North Carolina, Chapel Hill, NC.
Hall, P., & Sheather, S. J. (1988). On the Distribution of a Studentized Quantile. Journal of the Royal Statistical Society: Series B (Methodological), 50(3), 381–391.
Harrell, F. E., & Davis, C. E. (1982). A new distribution-free quantile estimator. Biometrika, 69(3), 635–640.
Heidelberger, P. (1995). Fast Simulation of Rare Events in Queueing and Reliability Models. ACM Transactions on Modeling and Computer Simulation (TOMACS), 5(1), 43–85.
Joseph, A. G., & Bhatnagar, S. (2015). A stochastic approximation algorithm for quantile estimation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9490, (pp. 311–319). Springer Verlag.
Jourdain, B., & Lelong, J. (2009). Robust adaptive importance sampling for normal random vectors. Annals of Applied Probability, 19(5), 1687–1718.
Kim, S. H., & Nelson, B. L. (2001). A Fully Sequential Procedure for Indifference-Zone Selection in Simulation. ACM Transactions on Modeling and Computer Simulation, 11(3), 251–273.
Kim, S. H., & Nelson, B. L. (2006). On the asymptotic validity of fully sequential selection procedures for steady-state simulation. Operations Research, 54(3), 475–488.
Lam, H., Jiang, G., & Fu, M. C. (2019). On efficiencies of stochastic optimization procedures under importance sampling. In Proceedings - Winter Simulation Conference, vol. 2018-Decem, (pp. 1862–1873). Institute of Electrical and Electronics Engineers Inc.
Lesnevski, V., Nelson, B. L., & Staum, J. (2007). Simulation of coherent risk measures based on generalized scenarios. Management Science, 53(11), 1756–1769.
Luo, J., Hong, L. J., Nelson, B. L., &Wu, Y. (2015). Fully sequential procedures for largescale ranking-and-selection problems in parallel computing environments. Operations Research, 63(5), 1177–1194.
Nakayama, M. K. (2014). Confidence intervals for quantiles using sectioning when applying variance-reduction techniques. In ACM Transactions on Modeling and Computer Simulation, vol. 24. Association for Computing Machinery.
Parzen, E. (1979). Nonparametric Statistical Data Modeling. Journal of the American Statistical Association, 74(365), 105–121.
Pastel, R. (2012). Estimation of rare event probabilities and extreme quantiles. Applications in the aerospace domain. Tech. rep.
Pasupathy, R., Szechtman, R., & Y¨ucesan, E. (2010). Selecting small quantiles. In Proceedings - Winter Simulation Conference, (pp. 2762–2770). WSC.
Peng, Y., Chen, C.-h., Fu, M. C., Hu, J.-Q., & Ryzhov, I. O. (2019). Efficient Sampling Allocation Procedures for Selecting the Optimal Quantile.
Pichitlamken, J., Nelson, B. L., & Hong, L. J. (2006). A sequential procedure for neighborhood selection-of-the-best in optimization via simulation. European Journal of Operational Research, 173(1), 283–298.
Rinott, Y. (1978). On two-stage selection procedures and related probability-inequalities. Communications in Statistics - Theory and Methods, 7(8), 799–811.
Rubino, G., & Tuffin, B. (2009). Rare Event Simulation using Monte Carlo Methods. John Wiley & Sons Inc.
Rubinstein, R. Y. (1992). Sensitivity analysis of discrete event systems by the ”push out” method. Annals of Operations Research, 39(1), 229–250.
Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare events. European Journal of Operational Research, 99(1), 89–112.
Sabuncuoglu, I., Fadiloglu, M. M., & C¸ elik, S. (2008). Variance reduction techniques: Experimental comparison and analysis for single systems. IIE Transactions (Institute of Industrial Engineers), 40(5), 538–551.
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. New York: John Wiley & Sons.
Tamhane, A. C., Bechhofer, R. E., Santner, T. J., & Goldsman, D. M. (1996). Design and Analysis of Experiments for Statistical Selection, Screening and Multiple Comparisons. Technometrics, 38(3), 289.