| 研究生: |
劉鳳森 Liu, Feng-sen |
|---|---|
| 論文名稱: |
排臭馬桶坐墊之有限元素分析與設計 Finite Element Analysis and Design on Discharging Stinking-Smell Toilet Seat |
| 指導教授: |
潘文峰
Pan, Wen-feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 有限元素分析 、排臭 、收斂分析 、馬桶坐墊 |
| 外文關鍵詞: | toilet seat, Pro/Engineer, convergence, ANSYS, finite element |
| 相關次數: | 點閱:85 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究的主要目的是設計一個堅固且具有排臭功能的馬桶坐墊(簡稱:馬桶坐墊),而設計的考量主要為馬桶坐墊結構承載應力下的應變行為,且也將進行馬桶坐墊可行性的評估,最後將設計的馬桶坐墊、馬桶底座、馬桶水箱及廁所結構建立起相關的連結機構及線路。
理論分析流程將分成四部份進行,第一部份為運用Pro/Engineer 3D繪圖軟體建立可能式樣、尺寸馬桶坐墊的3D分析模式及其立體圖。第二部份為根據Pro/Engineer所建立馬桶坐墊的分析模式轉換到有限元素分析軟體ANSYS上,並進行元素的切割及負載條件及邊界條件的建立。第三部份為進行有限元素ANSYS軟體的分析,並進行數值結果的收斂分析與坐墊厚度的最佳尺寸分析。第四部份為設計馬桶坐墊與馬桶底座、馬桶水箱及廁所室內結構的相關連結的機構及線路,並利用示意圖將設計概念顯現出來。
The main purpose of this thesis is to design a solid and discharging stinky-smell toilet seat (for short: toilet seat). The design consideration is the structure of the toilet seat can withstand the strain behavior under the stress. And the feasibility of the toilet seat is also considered in this analysis process. Finally, the relative connecting mechanism and pipelines of the toilet seat, toilet base, toilet tank and lavatory structure are constructed.
The theoretical analysis process is divided into four parts. The first part is to use Pro/Engineer 3D mapping software to set up the analysis model and its solid chart of possible styles and sizes of the toilet seat. The second part is to base the designed model and transfer the model to the finite element program ‘‘ANSYS’’ and build the model element mesh, loading condition and boundary condition. The third part to proceed the finite element ANSYS analysis and base on the result to proceed the convergence analysis and the best dimension analysis of the seat thickness. The fourth part is to construct the relative connecting mechanism and pipelines of the toilet seat, toilet base, toilet tank and lavatory structure and display the designed idea by using the schematic diagram.
[1] Q., Gong, Z., Zhou, Y. Yang and X. Wang, “Design Optimization and Simulation on Microelectromagnetic Pump”, Sensor and Actuator, Vol. 83, p.200 ,2000.
[2] S. Zurn, M. Hsieh, G. Smith, D. Markus, M. Zang, G. Hughes, Y. Nam, M. Arik and D. Polla, “Fabrication and Structural Characteristic of a Resonant Frequency PZT Microcantilever”, Smart Material Structures, Vol. 10, p. 252 ,2001.
[3] K. Jung, J. Lee and B. Choi, “Numerical Analysis of the Micromirror for Projection TV Using FEM”, Microsystem Technologies, Vol. 7, p. 75, 2001.
[4] Y. H. Mu, N. P. Hung and K. A. Ngoi, “Optimisation Design of a Piezoelectric Micropump”, Int. J. Advanced Manufacturing Tech., Vol. 15, p.573, 1999.
[5] L. Zhang and G. Yang, “Design, Simulation and Testing on a Light Modulating Thermal Image Device”, J. Micromechanics and Microengineering, Vol. 11, p. 85, 2001.
[6] H. Gu, A. Chattopudhyay, J. Li and X. Zhou, “A Higher Order Temperature Theory for Coupled Thermo-Piezolectric-Mechanical Modeling of Smart Composites”, Int. J. Solids and Structures, Vol. 37, p. 6479, 2000.
[7] I. Akpinar, N. Anil and L. Parnas, “A Natural Tooth’s Stress Distribution in Occlusion with a Dental Implant”, J. Oral Rehabilitation, Vol. 27, p.538, 2000.
[8] T. Johansson, P. Meier and R. Blickhan, “A Finite-Element Model for the Mechanical Analysis of Skeletal Muscles”, Journal of Theoretical Biology, Vol. 206, p. 131, 2000.
[9] J. Noailles, W. Skalli, C. Tardiea, T. Siguier znd F. Lavaste, “Finite Element Geometrical and Mechanical Modeling of the Knee Joint”, J. Biomechanics, Vol. 31, p.118, 1998.
[10] Bennett J.A.,and Botkin M.E., “Structural Optimization Approach with Geometric Description and Adaptive Mesh Refinement”, AIAA Journal, Vol. 23, pp. 458, 1985.
[11] Groth H.L., and Nordlund P., “Shape Optimization of Bonded Joints”, Int. J. Adhesion and Adhesives, Vol. 11, pp. 204, 1991.
[12] Kamiya N.,and Kita E., “Boundary Element Method for Quasi-harmonic Differential Equation with Application to Stress Analysis and Shape Optimization of Helical Spring”, Computers and Structures, Vol. 37, pp. 81, 1990.
[13] Cheu T.C., “Procedures for Shape Optimization of Gas Turbine Disks”,Computers and Structures, Vol. 34, pp. 1, 1990.
[14] Zhe B., Rao B., Jia J.,and Li Y., ”Shape optimization of Arch Dam for Static and Dynamic Loads”, J. Structural Engineering, Vol. 108, pp. 2996, 1992.
[15] A. Mimaroglu, O.F. Yenihayat,and E. Avci, “Numerical analysis of fracture in ceramic coatings subjected to thermal loading”, Materials and Design, Vol. 17, pp. 283, 1996.
[16] Mahmood M.S.,and Davood R., “Analysis and optimization of a composite leaf spring”, Composite Structures, Vol. 60, pp. 317, 2003.
[17] Hwu C., Kao C.J.,and Chang L.E., “Delamination fracture criteria for composite laminates”, J. Composite Materials, V. 29, pp. 1962, 1995.
[18] Dirk Vollmer, Ulrich Meyer, Ulrich Joos, Andras Vegh,and Jozsef Piffko, “ Experimental and finite element study of a human mandible”, J. Cranio-Maxillofacial Surgery, Vol. 28, pp. 91, 2000.
[19] M. Amagai, “ Chip Scale Package (CSP) solder joint reliability and modeling”, J. Microelectronics Reliability, Vol. 39, pp. 463, 1999.
[20] 林清安, “Pro/Engineer Wildfire 2.0”, 知城數位科技, 2005.
[21] 李輝煌, “ANSYS 工程分析基礎與觀念”, 高立圖書, 2005.
[22] 康淵, 陳信吉, “ANSYS入門”, 全華圖書, 2006.
[23] 徐業良, “工程最佳化設計”, 華泰書局,1995.
[24] 廣惠章利,本吉正信, “塑膠物性入門 成型加工技術參考”,復漢出版社,1986.
[25] 林建中, “高分子材料科學(高分子材料機械性質學)”,新文京開發出版股份有限公司,2007.