| 研究生: |
馬彥維 Madrid, Ephraim Emmanuel |
|---|---|
| 論文名稱: |
氧化及鹼度對於微囊藻毒釋出DAB和AEG之影響 Effect of Oxidative and Salinity Stresses on the release of cyanotoxins AEG and DAB from Microcystis aeruginosa |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 過氧化氫 、氯化鈉 、微囊藻 、AEG 、DAB |
| 外文關鍵詞: | H2O2, NaCl, Microcystis aeruginosa, AEG, DAB |
| 相關次數: | 點閱:162 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
與飲用水相關的任何潛在健康風險十分重要並值得關注。近幾年來水中的藍藻是一大隱憂。這些存在於生活用水中微生物會產生某些對人體有潛在負面影響的代謝物。根據研究報告指出,某些藍藻能夠產生神經毒性藍藻毒素 β-N-甲氨基-L-丙氨酸 (BMAA) 及其異構體 2,4-二氨基丁酸 (DAB) 和 N-2-(氨基乙基)甘氨酸 (AEG)。BMAA 與神經退行性疾病有關,例如肌萎縮側索硬化 (ALS)、阿爾茨海默病 (AD) 和 ALS-帕金森氏癡呆症 (ALS-PDC)。而AEG 和 DAB,則與引起癲癇和其他神經退行性疾病有關。因此,對藍藻在環境及工程系統中的各項壓力條件(如由過氧化氫和鹽度引起的壓力條件)產生的神經毒素有更深入的研究與了解,對於水資源的供給與管理,是至關重要的。
這項研究將探討兩種在水處理過程中藍藻常經歷的環境壓力對銅綠微囊藻( Microcystis aeruginosa)中藍藻毒素 DAB 和 AEG 釋放的影響,這兩種環境壓力包含了水水中的過氧化氫與鹽度。此外,此研究也會檢驗上述毒素是否為細胞結構的一部分。瞭解藍藻與過氧化氫的暗反應是否會導致細胞破裂及釋放細胞毒素。而鹽度若仔細控制,也能將環境壓力控制在不會致使細胞破裂的情況。因此,這項研究探討了由過氧化氫與鹽度條件對藍藻引起的環境壓力與毒素釋放的能力。
實驗結果顯示,在暗反應條件下,過氧化氫會引起載有微囊藻細胞的樣品中 AEG 的釋放,且AEG 濃度隨著過氧化氫濃度增加而提高。對於 20 ppm 的劑量,在 6 小時的實驗中,增加的 AEG 濃度可能高達 u 至 7 ppb。而與氧化反應不同的是,鹽度增加 1% 並不會導致 AEG 的釋放。而在DAB的檢測中,過氧化氫與鹽度皆未造成DAB的顯著變化。AEG 的釋放可能不是由過氧化氫對銅綠假單胞菌細胞造成的壓力引起的。 它更有可能是由過氧化氫與細胞膜中存在的一些前體反應而引起的。後續的研究建議可探討氧化反應過程中形成的 AEG 的前體和反應機制。
It is crucial to consider any potential health risks associated with drinking water. One of the concerns over the last few decades is the presence of cyanobacteria in the water. The concern is due to the fact that these microorganisms are capable of producing metabolites, some of them potentially having negative effects when present in treated water. Some cyanobacteria have been reported to be capable of producing the neurotoxic cyanotoxin β-N-methylamino-L-alanine (BMAA) as well as its isomers 2,4-diamionobutyric acid (DAB) and N-2-(aminoethyl)glycine (AEG). BMAA has been linked to be the neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS), Alzheimer’s Disease (AD), and ALS-Parkinson’s Dementia Complex (ALS-PDC). For AEG and DAB, they have been linked to causing seizure and other neurodegenerative effects. Therefore, a better understanding of the production of these neurotoxins by cyanobacteria under the stress conditions in environmental and engineered systems, such as those caused by hydrogen peroxide and salinity, are important for the management of water supply.
In this study, two common environmental stresses for cyanobacteria, hydrogen peroxide in water treatment processes and salinity on environmental water, were studied for their effects on the release of cyanotoxin DAB and AEG from Microcystis aeruginosa. In addition, these toxins were also examined to see if they are part of cellular structure. Dark reactions with H2O2 will not cause cells to rupture and potentially cause increase in cyanotoxins. Salinity, if its concentration is carefully chosen, can provide stress without causing cell rupture. This study will take a look at both for their ability to cause stress and potentially cause for cyanotoxin release.
The experimental results show that hydrogen peroxide under dark reactions conditions were capable of causing the release of AEG from Microcystis cell laden samples, with AEG concentrations increased with increasing concentrations. The increased AEG concentrations could be as high as u to 7 μg-L-1 within a 6hr experiment for dose of 20 mg-L-1. Unlike oxidation, increased salinity of 10 g-L-1 did not cause the release of AEG. For both oxidation and salinity stresses, DAB was not found to change substantially. The release of AEG may not be caused by the stress to M. aeruginosa cells posed by hydrogen peroxide. It is more likely to be caused by the reaction of hydrogen peroxide with some precursors present in the cell membrane. More studies are suggested to understand the precursors and the reaction mechanism of AEG formed during the oxidation.
Akbulatov, S. and Boulatov, R. (2017). "Experimental Polymer Mechanochemistry and its Interpretational Frameworks." Chemphyschem 18(11): 1422-1450.
Banack, S. A.; Johnson, H. E., et al. (2007). "Production of the neurotoxin BMAA by a marine cyanobacterium." Mar Drugs 5(4): 180-196.
Banack, S. A. and Murch, S. J. (2009). "Multiple neurotoxic items in the Chamorro diet link BMAA with ALS/PDC." Amyotroph Lateral Scler 10 Suppl 2: 34-40.
Barry, S. J.; Carr, R. M., et al. (2003). "Use of S-pentafluorophenyl tris(2,4,6-trimethoxyphenyl)phosphonium acetate bromide and (4-hydrazino-4-oxobutyl) [tris(2,4,6-trimethoxyphenyl)phosphonium bromide for the derivatization of alcohols, aldehydes and ketones for detection by liquid chromatography/electrospray mass spectrometry." Rapid Commun Mass Spectrom 17(5): 484-497.
Beyanche, N. Y.; Nguyen Quang, T., et al. (2019). An Overview of Cyanobacteria Harmful Algal Bloom (CyanoHAB) Issues in Freshwater Ecosystems. Limnology: SOme New Aspects of Inland Water Ecology. D. Gocke, IntechOpen.
Bláha, L.; Babica, P., et al. (2009). "Toxins produced in cyanobacterial water blooms - toxicity and risks." Interdisciplinary toxicology 2(2): 36-41.
Bortoli, S.; Oliveira-Silva, D., et al. (2014). "Growth and microcystin production of a Brazilian Microcystis aeruginosa strain (LTPNA 02) under different nutrient conditions." Revista Brasileira de Farmacognosia 24(4): 389-398.
Buszewski, B. and Noga, S. (2012). "Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique." Anal Bioanal Chem 402(1): 231-247.
Cervantes Cianca, R. C.; Baptista, M. S., et al. (2012). "Reversed-phase HPLC/FD method for the quantitative analysis of the neurotoxin BMAA (β-N-methylamino-l-alanine) in cyanobacteria." Toxicon : official journal of the International Society on Toxinology 59(3): 379-384.
Chang, C.-W.; Huo, X., et al. (2018). "Exposure of Microcystis aeruginosa to hydrogen peroxide and titanium dioxide under visible light conditions: Modeling the impact of hydrogen peroxide and hydroxyl radical on cell rupture and microcystin degradation." Water Research 141: 217-226.
Chen, C.-H.; Flory, W., et al. (1972). "Variation of neurotoxicity of l- and d-2,4-diaminobutyric acid with route of administration." Toxicology and Applied Pharmacology 23(2): 334-338.
Chen, G.; Ding, X., et al. (2020). "Study on ultrasonic treatment for degradation of Microcystins (MCs)." Ultrasonics Sonochemistry 63: 104900.
Cheung, M. Y.; Liang, S., et al. (2013). "Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health." Journal of Microbiology 51(1): 1-10.
Christensen, S. J.; Hemscheidt, T. K., et al. (2012). "Detection and quantification of β-methylamino-L-alanine in aquatic invertebrates." Limnology and Oceanography: Methods 10(11): 891-898.
Cox, P. A.; Banack, S. A., et al. (2003). "Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam." Proc Natl Acad Sci U S A 100(23): 13380-13383.
Cox, P. A.; Banack, S. A., et al. (2005). "Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid." Proc Natl Acad Sci U S A 102(14): 5074-5078.
Cox, P. A.; Davis, D. A., et al. (2016). "Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain." Proceedings. Biological sciences 283(1823): 20152397.
Cruz, D.; Vasconcelos, V., et al. (2020). "Exopolysaccharides from Cyanobacteria: Strategies for Bioprocess Development." Applied Sciences 10(11).
Davis, T. W.; Berry, D. L., et al. (2009). "The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms." Harmful Algae 8(5): 715-725.
De Laat, J. and Gallard, H. (1999). "Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solution: Mechanism and Kinetic Modeling." Environmental Science & Technology 33(16): 2726-2732.
Delattre, C.; Pierre, G., et al. (2016). "Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides." Biotechnology Advances 34(7): 1159-1179.
Dick, F. and Kelly, J. S. (1975). "L-2,4-diaminobutyric acid (L-DABA) as a selective marker for inhibitory nerve terminals in rat brain." Br J Pharmacol 53(3): 439p.
Duan, Z.; Tan, X., et al. (2020). "Development of thermal treatment for the extraction of extracellular polymeric substances from Microcystis: Evaluating extraction efficiency and cell integrity." Algal Research 48: 101879.
El-Gamal, A.; Ghanem, N., et al. (2008). "Differential Responses of Anabaena Variabilis and Nostoc Linckia to Salt Stress and Their Role in Improvement the Growth Conditions of Some Salt Stressed Plant Seedlings." International Conference for Enhancing Scientific Research: New Horizons Tanta Conference Hall 20-21 February 2008: PP 1-10: 1-10.
Esterhuizen-Londt, M. and Downing, T. (2011). "Solid Phase Extraction of Beta(B)-N-methylamino-L-alanine (BMAA) from South African Water Supplies." Water SA 37: 523-528.
Faassen, E. J.; Antoniou, M. G., et al. (2016). "A Collaborative Evaluation of LC-MS/MS Based Methods for BMAA Analysis: Soluble Bound BMAA Found to Be an Important Fraction." Mar Drugs 14(3).
Faassen, E. J.; Gillissen, F., et al. (2012). "A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria." PLoS One 7(5): e36667.
Fan, J.; Daly, R., et al. (2013). "Impact of potassium permanganate on cyanobacterial cell integrity and toxin release and degradation." Chemosphere 92(5): 529-534.
Foss, A. J.; Chernoff, N., et al. (2018). "The analysis of underivatized β-Methylamino-L-alanine (BMAA), BAMA, AEG & 2,4-DAB in Pteropus mariannus mariannus specimens using HILIC-LC-MS/MS." Toxicon : official journal of the International Society on Toxinology 152: 150-159.
Franklin, D. J. (2014). "Explaining the causes of cell death in cyanobacteria: what role for asymmetric division?" Journal of Plankton Research 36(1): 11-17.
Georges des Aulnois, M.; Réveillon, D., et al. (2020). "Salt Shock Responses of Microcystis Revealed through Physiological, Transcript, and Metabolomic Analyses." Toxins (Basel) 12(3).
Georges des Aulnois, M.; Roux, P., et al. (2019). "Physiological and Metabolic Responses of Freshwater and Brackish-Water Strains of Microcystis aeruginosa Acclimated to a Salinity Gradient: Insight into Salt Tolerance." Appl Environ Microbiol 85(21).
Ghaffar, S.; Stevenson, R. J., et al. (2017). "Effect of phosphorus stress on Microcystis aeruginosa growth and phosphorus uptake." PLoS One 12(3): e0174349.
Glover, W. B.; Liberto, C. M., et al. (2012). "Reactivity of β-Methylamino-l-alanine in Complex Sample Matrixes Complicating Detection and Quantification by Mass Spectrometry." Analytical Chemistry 84(18): 7946-7953.
Guan, X.; Hoffman, B., et al. (2003). "A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples." Journal of Pharmaceutical and Biomedical Analysis 31(2): 251-261.
Guo, Y. and Gaiki, S. (2005). "Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography." J Chromatogr A 1074(1-2): 71-80.
Hemström, P. and Irgum, K. (2006). "Hydrophilic interaction chromatography." Journal of Separation Science 29(12): 1784-1821.
Hong, J. L. (1994). "Determination of amino acids by precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and high performance liquid chromatography with ultraviolet detection." Journal of Chromatography A 670(1): 59-66.
Jiang, L.; Aigret, B., et al. (2012). "Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples." Anal Bioanal Chem 403(6): 1719-1730.
Kaushal, S. S.; Likens, G. E., et al. (2018). "Freshwater salinization syndrome on a continental scale." Proceedings of the National Academy of Sciences 115(4): E574.
Lance, E.; Arnich, N., et al. (2018). "Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans." Toxins (Basel) 10(2).
Li, A.; Fan, H., et al. (2012). "Elucidation of matrix effects and performance of solid-phase extraction for LC-MS/MS analysis of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) neurotoxins in cyanobacteria." The Analyst 137 5: 1210-1219.
Li, J.; Ou, D., et al. (2011). "Applicability of the fluorescein diacetate assay for metabolic activity measurement of Microcystis aeruginosa (Chroococcales, Cyanobacteria)." Phycological Research 59(3): 200-207.
Li, X.; Chen, S., et al. (2020). "Comparing the effects of chlorination on membrane integrity and toxin fate of high- and low-viability cyanobacteria." Water Research 177: 115769.
Lin, T.-F.; Chang, D.-W., et al. (2009). "Effect of chlorination on the cell integrity of two noxious cyanobacteria and their releases of odorants." Journal of Water Supply Research and Technology-aqua 58: 539-551.
Lin, Y.-X. (2020). Effect of Chlorination on Cyanotoxin DAB and AEG Release and Degradation for Microcystis aeruginosa. National Cheng Kung Univeristy Envrionmental Engineering, National Cheng Kung University: 107.
Liu, M.; Shi, X., et al. (2017). "Responses of Microcystis Colonies of Different Sizes to Hydrogen Peroxide Stress." Toxins (Basel) 9(10): 306.
Lu, X.; Tian, C., et al. (2013). "Environmental factors influencing cyanobacteria community structure in Dongping Lake, China." Journal of Environmental Sciences 25(11): 2196-2206.
Main, B. J. and Rodgers, K. J. (2018). "Assessing the Combined Toxicity of BMAA and Its Isomers 2,4-DAB and AEG In Vitro Using Human Neuroblastoma Cells." Neurotoxicity Research 33(1): 33-42.
Manolidi, K.; Triantis, T. M., et al. (2019). "Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements." Journal of Hazardous Materials 365: 346-365.
Merel, S.; Walker, D., et al. (2013). "State of knowledge and concerns on cyanobacterial blooms and cyanotoxins." Environment International 59: 303-327.
Messele, S. A.; Bengoa, C., et al. (2019). "Enhanced Degradation of Phenol by a Fenton-Like System (Fe/EDTA/H2O2) at Circumneutral pH." Catalysts 9(5).
Metcalf, J. S.; Banack, S. A., et al. (2008). "Co-occurrence of β-N-methylamino-l-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004." Environmental Microbiology 10(3): 702-708.
Mikula, P.; Zezulka, S., et al. (2012). "Metabolic activity and membrane integrity changes in Microcystis aeruginosa – new findings on hydrogen peroxide toxicity in cyanobacteria." European Journal of Phycology 47(3): 195-206.
Monge, Z. F. (2011). Advanced Oxidation of Drinking Water using Ultraviolet Light and Alternative Solid Forms of Hydrogen Peroxide.
Muhetaer, G.; Asaeda, T., et al. (2020). "Effects of Light Intensity and Exposure Period on the Growth and Stress Responses of Two Cyanobacteria Species: Pseudanabaena galeata and Microcystis aeruginosa." Water 12(2).
Murch, S. J.; Cox, P. A., et al. (2004). "A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam." Proc Natl Acad Sci U S A 101(33): 12228-12231.
O'Brien-Coker, I. C.; Perkins, G., et al. (2001). "Aldehyde analysis by high performance liquid chromatography/tandem mass spectrometry." Rapid Communications in Mass Spectrometry 15(12): 920-928.
Pade, N. and Hagemann, M. (2014). "Salt acclimation of cyanobacteria and their application in biotechnology." Life (Basel, Switzerland) 5(1): 25-49.
Perkins, H. R. (1968). "Cell-wall mucopeptide of Corynebacterium insidiosum and Corynebacterium sepedonicum." The Biochemical journal 110(4): 47p-48p.
Qi, B.-L.; Liu, P., et al. (2014). "Derivatization for liquid chromatography-mass spectrometry." TrAC Trends in Analytical Chemistry 59: 121-132.
Rajalingam, D.; Loftis, C., et al. (2009). "Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate." Protein Sci 18(5): 980-993.
Regel, R. H.; Ferris, J. M., et al. (2002). "Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek." Aquat Toxicol 59(3-4): 209-223.
Ressler, C.; Redstone, P. A., et al. (1961). "Isolation and identification of a neuroactive factor from Lathyrus latifolius." Science 134(3473): 188-190.
Réveillon, D.; Abadie, E., et al. (2014). "Beta-N-methylamino-L-alanine: LC-MS/MS optimization, screening of cyanobacterial strains and occurrence in shellfish from Thau, a French Mediterranean lagoon." Mar Drugs 12(11): 5441-5467.
Réveillon, D.; Abadie, E., et al. (2015). "β-N-methylamino-l-alanine (BMAA) and isomers: Distribution in different food web compartments of Thau lagoon, French Mediterranean Sea." Mar Environ Res 110: 8-18.
Riggs, T. R.; Coyne, B. A., et al. (1954). "Amino acid concentration by a free cell neoplasm; structural influences." J Biol Chem 209(1): 395-411.
Rodriguez-Gonzalo, E. and García-Gómez, D. (2018). Hydrophilic Interaction Chromatography: Current Trends and Applications.
Rosén, J.; Westerberg, E., et al. (2016). "A new method for analysis of underivatized free β-methylamino-alanine: Validation and method comparison." Toxicon : official journal of the International Society on Toxinology 121: 105-108.
Rosén, J.; Westerberg, E., et al. (2016). "BMAA detected as neither free nor protein bound amino acid in blue mussels." Toxicon : official journal of the International Society on Toxinology 109: 45-50.
Schleifer, K. H. and Kandler, O. (1972). "Peptidoglycan types of bacterial cell walls and their taxonomic implications." Bacteriological reviews 36(4): 407-477.
Sellers, R. M. (1980). "Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate." Analyst 105(1255): 950-954.
Sharma, V. K.; Triantis, T. M., et al. (2012). "Destruction of microcystins by conventional and advanced oxidation processes: A review." Separation and Purification Technology 91: 3-17.
Silveira, S. B. and Odebrecht, C. (2019). "Effects of Salinity and Temperature on the Growth, Toxin Production, and Akinete Germination of the Cyanobacterium Nodularia spumigena." Frontiers in Marine Science 6(339).
Simpson, N. J. K. (2000). Solid-Phase Extraction: Principles, Techniques and Applications Taylor and Francis Group
Singh, A.; Hou, W.-C., et al. (2021). "Combined impact of silver nanoparticles and chlorine on the cell integrity and toxin release of Microcystis aeruginosa." Chemosphere 272: 129825.
Spácil, Z.; Eriksson, J., et al. (2010). "Analytical protocol for identification of BMAA and DAB in biological samples." Analyst 135(1): 127-132.
Szeinbaum, N.; Toporek, Y., et al. (2021). "Microbial helpers allow cyanobacteria to thrive in ferruginous waters." bioRxiv: 2020.2005.2008.085001.
Szlag, D.; Sinclair, J., et al. (2015). "Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants." Toxins (Basel) 7: 2198-2220.
Tonk, L.; Bosch, K., et al. (2007). "Tonk L, Bosch K, Visser PM, Huisman J.. Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquat Microb Ecol 46: 117-123." Aquatic Microbial Ecology 46.
Tsugita, A. and Scheffler, J. J. (1982). "A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid." Eur J Biochem 124(3): 585-588.
Tymm, F. J. M.; Bishop, S. L., et al. (2021). "A Single Laboratory Validation for the Analysis of Underivatized β-N-Methylamino-L-Alanine (BMAA)." Neurotoxicity Research 39(1): 49-71.
Vanhoenacker, G.; Dumont, E., et al. (2009). "Determination of arylamines and aminopyridines in pharmaceutical products using in-situ derivatization and liquid chromatography–mass spectrometry." Journal of Chromatography A 1216(16): 3563-3570.
Vega, A. and Bell, E. A. (1967). "α-Amino-β-methylaminopropionic acid, a new amino acid from seeds of Cycas circinalis." Phytochemistry 6(5): 759-762.
Violi, J. P.; Facey, J. A., et al. (2019). "Production of β-methylamino-L-alanine (BMAA) and Its Isomers by Freshwater Diatoms." Toxins (Basel) 11(9).
Violi, J. P.; Mitrovic, S. M., et al. (2019). "Prevalence of β-methylamino-L-alanine (BMAA) and its isomers in freshwater cyanobacteria isolated from eastern Australia." Ecotoxicology and Environmental Safety 172: 72-81.
Wang, S. (2008). "A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater." Dyes and Pigments 76(3): 714-720.
Westrick, J. A.; Szlag, D. C., et al. (2010). "A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment." Anal Bioanal Chem 397(5): 1705-1714.
Yan, B.; Liu, Z., et al. (2017). "Optimization of the Determination Method for Dissolved Cyanobacterial Toxin BMAA in Natural Water." Analytical Chemistry 89(20): 10991-10998.
Yang, Z.; Geng, L., et al. (2012). "Combined effects of temperature, light intensity, and nitrogen concentration on the growth and polysaccharide content of Microcystis aeruginosa in batch culture." Biochemical Systematics and Ecology 41: 130-135.
Yu, Y.; Cai, L., et al. (2005). "Precolumn Derivatization Liquid Chromatography with Mass Spectrometry Assay for the Determination of Glucosamine in Small Volume Human Plasma." Annali di Chimica 95(9‐10): 709-713.
Yudisaputra, D. K. (2019). Determination of BMAA in Three Cyanobacterial Strains Under Different Growth Phases. Nation Cheng Kung University Environmental Engineering, National Cheng Kung University: 1-99.
Zhou, T.; Zheng, J., et al. (2018). "Growth suppression and apoptosis-like cell death in Microcystis aeruginosa by H2O2: A new insight into extracellular and intracellular damage pathways." Chemosphere 211: 1098-1108.
Zukin, S. R.; Young, A. B., et al. (1974). "Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system." Proc Natl Acad Sci U S A 71(12): 4802-4807.