研究生: |
李育賢 Li, Yu-Xian |
---|---|
論文名稱: |
FTO基板上利用水熱法製備p-Cu2O/n-ZnO異質接面膜及其相關應用之研究 Hydrothermal Fabrication of p-Cu2O/n-ZnO Heterojunction Films on FTO and Their Applications |
指導教授: |
張高碩
Chang, Kao-Shuo |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 水熱法 、旋轉塗佈法 、p-Cu2O/n-ZnO 異質接面膜 、光降解 、異質接面二極體 |
外文關鍵詞: | hydrothermal method, spin-coating method, p-Cu2O/n-ZnO heterojunction film, photodegradation, heterojunction diode |
相關次數: | 點閱:103 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究論文成功地直接在FTO基板上利用簡便的水熱法輔以旋轉塗佈法製備出p-Cu2O/n-ZnO 異質接面膜。本研究主要透過XRD、SEM、TEM和XPS進行材料的相鑑定、表面形貌觀察以及組成元素的束縛能分布分析。
此p-Cu2O/n-ZnO 異質接面膜可被應用於亞甲藍(MB)水溶液的光降解。經過三小時的光照射,大約80%的亞甲藍水溶液會被降解且其降解反應常數(k)約為8.9 × 10-3 min-1。此外,藉由UV-Vis及UPS的結果所繪製出的能帶圖,我們推測直接型Z-scheme的異質接合是造成p-Cu2O/n-ZnO 異質接面膜的光降解效率得以被提升之可能的機制。而從Al/n-ZnO/p-Cu2O/FTO異質接面二極體的電流密度-電壓(J-V)之特性來看,其在黑暗中具有優異的整流效果。然而,在-3V的逆向偏壓下照射紫外光,其電流密度和在黑暗中相比可被提升將近80倍,這也意味著這個二極體具備優異的紫外光感測性質。
A p-Cu2O/n-ZnO heterojunction film was directly fabricated on fluorine-doped tin oxide (FTO) substrate through a facile hydrothermal method with the assistance of a spin-coating method in this study. The crystal phases, surface morphology, and binding states of constituent elements and their distribution were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS).
A p-Cu2O/n-ZnO heterojunction film was applied to the photodegradation of methylene blue (MB). After 3-h illumination, approximately 80 % of MB was degraded and the degradation rate constant (k) was approximately 8.9 × 10-3 min-1. Moreover, a direct Z-scheme heterojunction was proposed as a potential mechanism for the improvement of photodegradation efficiency based on the energy band diagram, which was constructed from the UV-Vis and UPS results. The current density-voltage (J-V) characteristics of an Al/n-ZnO/p-Cu2O/FTO heterojunction diode showed an excellent rectifying behavior in the dark while the current density under illumination increased approximately 80 times at a reverse bias of -3 V compared with that in the dark, implying an excellent UV sensing property of the sample.
[1] K. Byrappa and T. Adschiri, "Hydrothermal technology for nanotechnology," Progress in Crystal Growth and Characterization of Materials, 53(2), 117-166, (2007).
[2] M. O'donoghue, "A guide to Man-made Gemstones," New York (USA): Van Nostrand Reinhold Company, (1983).
[3] J. K. Dong, H. Y. Xu, F. J. Zhang, C. Chen, L. Liu, and G. T. Wu, "Synergistic effect over photocatalytic active Cu2O thin films and their morphological and orientational transformation under visible light irradiation," Applied Catalysis a-General, 470, 294-302, (2014).
[4] E. Husanu, V. Cappello, C. S. Pomelli, J. David, M. Gemmi, and C. Chiappe, "Chiral ionic liquid assisted synthesis of some metal oxides," Rsc Advances, 7(2), 1154-1160, (2017).
[5] L. Cheng, Y. L. Tian, and J. D. Zhang, "Construction of p-n heterojunction film of Cu2O/alpha-Fe2O3 for efficiently photoelectrocatalytic degradation of oxytetracycline," Journal of Colloid and Interface Science, 526, 470-479, (2018).
[6] F. B. Li and X. Z. Li, "The enhancement of photodegradation efficiency using Pt-TiO2 catalyst," Chemosphere, 48(10), 1103-1111, (2002).
[7] C. G. Tian, Q. Zhang, A. P. Wu, M. J. Jiang, Z. L. Liang, B. J. Jiang, and H. G. Fu, "Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation," Chemical Communications, 48(23), 2858-2860, (2012).
[8] S. C. Yan, Z. S. Li, and Z. G. Zou, "Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine," Langmuir, 25(17), 10397-10401, (2009).
[9] A. Bhattacharjee, M. Ahmaruzzaman, and T. Sinha, "A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds," Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 136, 751-760, (2015).
[10] Z. Yu, B. S. Yin, F. Y. Qu, and X. Wu, "Synthesis of self-assembled CdS nanospheres and their photocatalytic activities by photodegradation of organic dye molecules," Chemical Engineering Journal, 258, 203-209, (2014).
[11] J. Lin, J. Lin, and Y. F. Zhu, "Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance," Inorganic Chemistry, 46(20), 8372-8378, (2007).
[12] N. Wang, X. Y. Li, Y. X. Wang, X. Quan, and G. H. Chen, "Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method," Chemical Engineering Journal, 146(1), 30-35, (2009).
[13] A. O. Ibhadon and P. Fitzpatrick, "Heterogeneous Photocatalysis: Recent Advances and Applications," Catalysts, 3(1), 189-218, (2013).
[14] T. Z. Zhang, L. Q. Ge, X. Wang, and Z. Z. Gu, "Hollow TiO2 containing multilayer nanofibers with enhanced photocatalytic activity," Polymer, 49(12), 2898-2902, (2008).
[15] J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, "Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition," Advanced Materials, 16(18), 1661-1664, (2004).
[16] S. Z. Hu, L. Ma, J. G. You, F. Y. Li, Z. P. Fan, G. Lu, D. Liu, and J. Z. Gui, "Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus," Applied Surface Science, 311, 164-171, (2014).
[17] Z. M. El-Bahy, A. A. Ismail, and R. M. Mohamed, "Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue)," Journal of Hazardous Materials, 166(1), 138-143, (2009).
[18] N. Sobana, M. Muruganadham, and M. Swaminathan, "Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes," Journal of Molecular Catalysis a-Chemical, 258(1-2), 124-132, (2006).
[19] S. X. Liu and X. Y. Chen, "A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation," Journal of Hazardous Materials, 152(1), 48-55, (2008).
[20] X. W. Zou, H. Q. Fan, Y. M. Tian, and S. J. Yan, "Synthesis of Cu2O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity," Crystengcomm, 16(6), 1149-1156, (2014).
[21] Z. C. Wang, J. H. Liu, and W. Chen, "Plasmonic Ag/AgBr nanohybrid: synergistic effect of SPR with photographic sensitivity for enhanced photocatalytic activity and stability," Dalton Transactions, 41(16), 4866-4870, (2012).
[22] W. B. Hou and S. B. Cronin, "A Review of Surface Plasmon Resonance-Enhanced Photocatalysis," Advanced Functional Materials, 23(13), 1612-1619, (2013).
[23] S. W. Zhang, B. P. Zhang, S. Li, X. Y. Li, and Z. C. Huang, "SPR enhanced photocatalytic properties of Au-dispersed amorphous BaTiO3 nanocomposite thin films," Journal of Alloys and Compounds, 654, 112-119, (2016).
[24] C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, "Surface-Plasmon-Enhanced Ultraviolet Random Lasing from ZnO Nanowires Assisted by Pt Nanoparticles," Applied Physics Express, 5(6), 062003, (2012).
[25] 林宏勳,「用電化學沉積法製備氧化亞銅/氧化鋅之p-n異質接面型太陽能電池之研究」,國立東華大學光電工程學系,碩士論文,2013。
[26] 詹益明,「氧化亞銅-氧化鋅異質接面太陽能電池之研製」,國立臺灣科技大學工程技術研究所,碩士論文,2010。
[27] G. Sun, "Intersubband approach to silicon based lasers-circumventing the indirect bandgap limitation," Advances in Optics and Photonics, 3(1), 53-87, (2011).
[28] D. A. Neamen, "Semiconductor physics and devices: basic principles," New York (USA): McGraw-Hill, (2012).
[29] C. Wang, J. P. Xu, S. B. Shi, Y. Z. Zhang, Y. Y. Gao, Z. M. Liu, X. G. Zhang, and L. Li, "Optimizing performance of Cu2O/ZnO nanorods heterojunction based self-powered photodetector with ZnO seed layer," Journal of Physics and Chemistry of Solids, 103, 218-223, (2017).
[30] Y. H. Ok, K. R. Lee, B. O. Jung, Y. H. Kwon, and H. K. Cho, "All oxide ultraviolet photodetectors based on a p-Cu2O film/n-ZnO heterostructure nanowires," Thin Solid Films, 570, 282-287, (2014).
[31] M. Patel, H. S. Kim, and J. Kim, "All Transparent Metal Oxide Ultraviolet Photodetector," Advanced Electronic Materials, 1(11), 1500232, (2015).
[32] J. S. Yoon, J. W. Lee, and Y. M. Sung, "Enhanced photoelectrochemical properties of Z-scheme ZnO/p-n Cu2O PV-PEC cells," Journal of Alloys and Compounds, 771, 869-876, (2019).
[33] S. J. Chen, L. M. Lin, J. Y. Liu, P. W. Lv, X. P. Wu, W. F. Zheng, Y. Qu, and F. C. Lai, "An electrochemical constructed p-Cu2O/n-ZnO heterojunction for solar cell," Journal of Alloys and Compounds, 644, 378-382, (2015).
[34] W. F. Zheng, Y. Chen, X. H. Peng, K. H. Zhong, Y. B. Lin, and Z. G. Huang, "The Phase Evolution and Physical Properties of Binary Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering," Materials, 11(7), 1253, (2018).
[35] P. A. Korzhavyi and B. Johansson, "Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation," Stockholm (Sweden): Swedish Nuclear Fuel and Waste Management Co., (2011).
[36] P. Scardi and M. Leoni, "On the crystal structure of nanocrystalline Cu2O," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 393(1-2), 396-397, (2005).
[37] L. Gao, C. Pang, D. F. He, L. M. Shen, A. Gupta, and N. Z. Bao, "Synthesis of Hierarchical Nanoporous Microstructures via the Kirkendall Effect in Chemical Reduction Process," Scientific Reports, 5, 16061, (2015).
[38] J. Y. Ho and M. H. Huang, "Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity," Journal of Physical Chemistry C, 113(32), 14159-14164, (2009).
[39] T. F. Jiang, T. F. Xie, W. S. Yang, L. P. Chen, H. M. Fan, and D. J. Wang, "Photoelectrochemical and Photovoltaic Properties of p-n Cu2O Homojunction Films and Their Photocatalytic Performance," Journal of Physical Chemistry C, 117(9), 4619-4624, (2013).
[40] F. Sun, Y. P. Guo, W. B. Song, J. Z. Zhao, L. Q. Tang, and Z. C. Wang, "Morphological control of Cu2O micro-nanostructure film by electrodeposition," Journal of Crystal Growth, 304(2), 425-429, (2007).
[41] A. S. Reddy, S. Uthanna, and P. S. Reddy, "Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures," Applied Surface Science, 253(12), 5287-5292, (2007).
[42] Y. F. Lim, C. S. Chua, C. J. J. Lee, and D. Z. Chi, "Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting," Physical Chemistry Chemical Physics, 16(47), 25928-25934, (2014).
[43] A. Eskandari, P. Sangpour, and M. R. Vaezi, "Hydrophilic Cu2O nanostructured thin films prepared by facile spin coating method: Investigation of surface energy and roughness," Materials Chemistry and Physics, 147(3), 1204-1209, (2014).
[44] Y. W. Tan, X. Y. Xue, Q. Peng, H. Zhao, T. H. Wang, and Y. D. Li, "Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios," Nano Letters, 7(12), 3723-3728, (2007).
[45] Y. Chang and H. C. Zeng, "Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu2O microcrystals," Crystal Growth & Design, 4(2), 273-278, (2004).
[46] R. Ji, W. D. Sun, and Y. Chu, "One-Step Hydrothermal Synthesis of a Porous Cu2O Film and Its Photoelectrochemical Properties," Chemphyschem, 14(17), 3971-3976, (2013).
[47] L. Pan, J. J. Zou, T. R. Zhang, S. B. Wang, Z. Li, L. Wang, and X. W. Zhang, "Cu2O Film via Hydrothermal Redox Approach: Morphology and Photocatalytic Performance," Journal of Physical Chemistry C, 118(30), 16335-16343, (2014).
[48] W. Y. Zhao, W. Y. Fu, H. B. Yang, C. J. Tian, M. H. Li, Y. X. Li, L. N. Zhang, Y. M. Sui, X. M. Zhou, H. Chen, and G. T. Zou, "Electrodeposition of Cu2O films and their photoelectrochemical properties," Crystengcomm, 13(8), 2871-2877, (2011).
[49] Y. L. Liu, Y. C. Liu, R. Mu, H. Yang, C. L. Shao, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, "The structural and optical properties of Cu2O films electrodeposited on different substrates," Semiconductor Science and Technology, 20(1), 44-49, (2005).
[50] H. Yang and Z. H. Liu, "Facile Synthesis, Shape Evolution, and Photocatalytic Activity of Truncated Cuprous Oxide Octahedron Microcrystals with Hollows," Crystal Growth & Design, 10(5), 2064-2067, (2010).
[51] Y. Zhang, B. Deng, T. R. Zhang, D. M. Gao, and A. W. Xu, "Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity," Journal of Physical Chemistry C, 114(11), 5073-5079, (2010).
[52] S. D. Sun, X. J. Zhang, Q. Yang, S. H. Liang, X. Z. Zhang, and Z. M. Yang, "Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications," Progress in Materials Science, 96, 111-173, (2018).
[53] M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, and K. Domen, "Cu2O as a photocatalyst for overall water splitting under visible light irradiation," Chemical Communications, (3), 357-358, (1998).
[54] J. S. Luo, L. Steier, M. K. Son, M. Schreier, M. T. Mayer, and M. Gratzel, "Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting," Nano Letters, 16(3), 1848-1857, (2016).
[55] A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, and E. Thimsen, "Highly active oxide photocathode for photoelectrochemical water reduction," Nature Materials, 10(6), 456-461, (2011).
[56] X. J. Wan, J. L. Wang, L. F. Zhu, and J. N. Tang, "Gas sensing properties of Cu2O and its particle size and morphology-dependent gas-detection sensitivity," Journal of Materials Chemistry A, 2(33), 13641-13647, (2014).
[57] S. Felix, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, "Electrocatalytic activity of Cu2O nanocubes-based electrode for glucose oxidation," Journal of Chemical Sciences, 126(1), 25-32, (2014).
[58] H. Lahmar, F. Setifi, A. Azizi, G. Schmerber, and A. Dinia, "On the electrochemical synthesis and characterization of p-Cu2O/n-ZnO heterojunction," Journal of Alloys and Compounds, 718, 36-45, (2017).
[59] V. Srikant and D. R. Clarke, "On the optical band gap of zinc oxide," Journal of Applied Physics, 83(10), 5447-5451, (1998).
[60] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, 98(4), 041301, (2005).
[61] B. Meyer and D. Marx, "Density-functional study of the structure and stability of ZnO surfaces," Physical Review B, 67(3), 035403, (2003).
[62] P. F. Carcia, R. S. Mclean, M. H. Reilly, and G. Nunes, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, 82(7), 1117-1119, (2003).
[63] W. T. Chiou, W. Y. Wu, and J. M. Ting, "Growth of single crystal ZnO nanowires using sputter deposition," Diamond and Related Materials, 12(10-11), 1841-1844, (2003).
[64] A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, and A. Waag, "High-quality ZnO layers grown by MBE on sapphire," Superlattices and Microstructures, 38(4-6), 265-271, (2005).
[65] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe, S. Fujita, and S. Fujita, "Effects of oxygen plasma condition on MBE growth of ZnO," Journal of Crystal Growth, 209(2-3), 522-525, (2000).
[66] B. Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, and T. Okada, "ZnO Nanowalls Grown with High-Pressure PLD and Their Applications as Field Emitters and UV Detectors," Journal of Physical Chemistry C, 113(25), 10975-10980, (2009).
[67] D. Barreca, D. Bekermann, E. Comini, A. Devi, R. A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, and E. Tondello, "1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases," Sensors and Actuators B-Chemical, 149(1), 1-7, (2010).
[68] X. Y. Duan, G. D. Chen, L. Guo, Y. Z. Zhu, H. G. Ye, and Y. L. Wu, "A template-free CVD route to synthesize hierarchical porous ZnO films," Superlattices and Microstructures, 88, 501-507, (2015).
[69] P. Obrien, T. Saeed, and J. Knowles, "Speciation and the nature of ZnO thin films from chemical bath deposition," Journal of Materials Chemistry, 6(7), 1135-1139, (1996).
[70] S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Science and Technology of Advanced Materials, 10(1), 013001, (2009).
[71] B. Baruwati, D. K. Kumar, and S. V. Manorama, "Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH," Sensors and Actuators B-Chemical, 119(2), 676-682, (2006).
[72] M. Guo, P. Diao, and S. M. Cai, "Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties," Applied Surface Science, 249(1-4), 71-75, (2005).
[73] R. Wahab, S. G. Ansari, Y. S. Kim, H. K. Seo, G. S. Kim, G. Khang, and H. S. Shin, "Low temperature solution synthesis and characterization of ZnO nano-flowers," Materials Research Bulletin, 42(9), 1640-1648, (2007).
[74] S. N. Sun, B. Mari, H. L. Wu, M. Mollar, and H. N. Cui, "Morphology and photoluminescence study of electrodeposited ZnO films," Applied Surface Science, 257(3), 985-989, (2010).
[75] J. M. Jang, S. D. Kim, H. M. Choi, J. Y. Kim, and W. G. Jung, "Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process," Materials Chemistry and Physics, 113(1), 389-394, (2009).
[76] J. H. Yang, J. H. Zheng, H. J. Zhai, X. M. Yang, L. L. Yang, Y. Liu, J. H. Lang, and M. Gao, "Oriented growth of ZnO nanostructures on different substrates via a hydrothermal method," Journal of Alloys and Compounds, 489(1), 51-55, (2010).
[77] Y. L. Chen, L. C. Kuo, M. L. Tseng, H. M. Chen, C. K. Chen, H. J. Huang, R. S. Liu, and D. P. Tsai, "ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange," Optics Express, 21(6), 7240-7249, (2013).
[78] Y. Xi, J. H. Song, S. Xu, R. S. Yang, Z. Y. Gao, C. G. Hu, and Z. L. Wang, "Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators," Journal of Materials Chemistry, 19(48), 9260-9264, (2009).
[79] S. Xu, Y. G. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated Multilayer Nanogenerator Fabricated Using Paired Nanotip-to-Nanowire Brushes," Nano Letters, 8(11), 4027-4032, (2008).
[80] J. H. Song, J. Zhou, and Z. L. Wang, "Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment," Nano Letters, 6(8), 1656-1662, (2006).
[81] Z. L. Wang and J. H. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, 312(5771), 242-246, (2006).
[82] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Applied Physics Letters, 84(18), 3654-3656, (2004).
[83] J. Q. Xu, Q. Y. Pan, Y. A. Shun, and Z. Z. Tian, "Grain size control and gas sensing properties of ZnO gas sensor," Sensors and Actuators B-Chemical, 66(1-3), 277-279, (2000).
[84] H. J. Li, Y. Zhou, W. G. Tu, J. H. Ye, and Z. G. Zou, "State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance," Advanced Functional Materials, 25(7), 998-1013, (2015).
[85] S. Bai, J. Jiang, Q. Zhang, and Y. J. Xiong, "Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations," Chemical Society Reviews, 44(10), 2893-2939, (2015).
[86] R. Marschall, "Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity," Advanced Functional Materials, 24(17), 2421-2440, (2014).
[87] Z. Fang, Y. F. Liu, Y. T. Fan, Y. H. Ni, X. W. Wei, K. B. Tang, J. M. Shen, and Y. Chen, "Epitaxial Growth of CdS Nanoparticle on Bi2S3 Nanowire and Photocatalytic Application of the Heterostructure," Journal of Physical Chemistry C, 115(29), 13968-13976, (2011).
[88] Y. Liu, Y. X. Yu, and W. D. Zhang, "MoS2/CdS Heterojunction with High Photoelectrochemical Activity for H-2 Evolution under Visible Light: The Role of MoS2," Journal of Physical Chemistry C, 117(25), 12949-12957, (2013).
[89] F. Opoku, K. K. Govender, C. Van Sittert, and P. P. Govender, "Recent Progress in the Development of Semiconductor-Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants," Advanced Sustainable Systems, 1(7), 1700006, (2017).
[90] M. L. Li, L. X. Zhang, X. Q. Fan, Y. J. Zhou, M. Y. Wu, and J. L. Shi, "Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light," Journal of Materials Chemistry A, 3(9), 5189-5196, (2015).
[91] A. Y. Meng, B. C. Zhu, B. Zhong, L. Y. Zhang, and B. Cheng, "Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H-2-production activity," Applied Surface Science, 422, 518-527, (2017).
[92] Z. Chen, H. Dinh, and E. Miller, "Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols," New York (USA): Springer, (2013).
[93] J. H. Zheng and L. Zhang, "Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability," Applied Catalysis B-Environmental, 237, 1-8, (2018).
[94] Q. Li, F. Shan, B. L. Sun, Y. Song, F. Wang, and J. Ji, "Photo-assisted electrocatalysis of CdS-MoS2 hybrid for hydrogen evolution reaction: Morphology-dependent photoelectroactivity of p-n junction photocathode under bias potential," International Journal of Hydrogen Energy, 42(8), 5549-5559, (2017).
[95] X. S. Wang, Y. D. Zhang, Q. C. Wang, B. Dong, Y. J. Wang, and W. Feng, "Photocatalytic activity of Cu2O/ZnO nanocomposite for the decomposition of methyl orange under visible light irradiation," Science and Engineering of Composite Materials, 26(1), 104-113, (2019).
[96] P. H. Hsiao, T. C. Li, and C. Y. Chen, "ZnO/Cu2O/Si Nanowire Arrays as Ternary Heterostructure-Based Photocatalysts with Enhanced Photodegradation Performances," Nanoscale Research Letters, 14, 244, (2019).
[97] A. Kathalingam, D. Vikraman, H. S. Kim, and H. J. Park, "Facile fabrication of n-ZnO nanorods/p-Cu2O heterojunction and its photodiode property," Optical Materials, 66, 122-130, (2017).
[98] V. Sedlarik, N. Saha, I. Kuritka, and P. Saha, "Environmentally friendly biocomposites based on waste of the dairy industry and poly(vinyl alcohol)," Journal of Applied Polymer Science, 106(3), 1869-1879, (2007).
[99] N. Takeno, "Atlas of Eh-pH diagrams," Tokyo (Japan): National Institute of Advanced Industrial Science and Technology, (2005).
[100] X. Y. Liu, R. Z. Hu, S. L. Xiong, Y. K. Liu, L. L. Chai, K. Y. Bao, and Y. T. Qian, "Well-aligned Cu2O nanowire arrays prepared by an ethylene glycol-reduced process," Materials Chemistry and Physics, 114(1), 213-216, (2009).
[101] A. Mitra, P. Howli, D. Sen, B. Das, and K. K. Chattopadhyay, "Cu2O/g-C3N4 nanocomposites: an insight into the band structure tuning and catalytic efficiencies," Nanoscale, 8(45), 19099-19109, (2016).
[102] W. Z. Tawfik, M. A. Hassan, M. A. Johar, S. W. Ryu, and J. K. Lee, "Highly conversion efficiency of solar water splitting over p-Cu2O/ZnO photocatalyst grown on a metallic substrate," Journal of Catalysis, 374, 276-283, (2019).
[103] J. Q. Pan, C. Zhao, X. F. Wei, C. Y. Chi, W. J. Zhao, C. S. Song, Y. Y. Zheng, and C. R. Li, "p-n junction induced electron injection type transparent photosensitive film of Cu2O/carbon quantum dots/ZnO," Nanotechnology, 29(8), 085202, (2018).
[104] T. Wang, B. J. Jin, Z. B. Jiao, G. X. Lu, J. H. Ye, and Y. P. Bi, "Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances," Journal of Materials Chemistry A, 2(37), 15553-15559, (2014).
[105] Y. T. Wang, Y. Y. Lu, W. W. Zhan, Z. X. Xie, Q. Kuang, and L. S. Zheng, "Synthesis of porous Cu2O/CuO cages using Cu-based metal-organic frameworks as templates and their gas-sensing properties," Journal of Materials Chemistry A, 3(24), 12796-12803, (2015).
[106] R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, "XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods," Ceramics International, 39(3), 2283-2292, (2013).
[107] A. B. Murphy, "Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting," Solar Energy Materials and Solar Cells, 91(14), 1326-1337, (2007).
[108] A. P. Finlayson, V. N. Tsaneva, L. Lyons, M. Clark, and B. A. Glowacki, "Evaluation of Bi-W-oxides for visible light photocatalysis," Physica Status Solidi a-Applications and Materials Science, 203(2), 327-335, (2006).
[109] A. Janotti and C. G. Van De Walle, "Fundamentals of zinc oxide as a semiconductor," Reports on Progress in Physics, 72(12), 126501, (2009).
[110] S. Banerjee and D. Chakravorty, "Optical absorption by nanoparticles of Cu2O," Europhysics Letters, 52(4), 468-473, (2000).
[111] J. Y. Pan, C. F. Yang, and Y. L. Gao, "Investigations of Cuprous Oxide and Cupric Oxide Thin Films by Controlling the Deposition Atmosphere in the Reactive Sputtering Method," Sensors and Materials, 28(7), 817-824, (2016).
[112] I. Mukherjee, S. Chatterjee, and N. A. Kulkarni, "Band Gap Tuning and Room-Temperature Photoluminescence of a Physically Self-Assembled Cu2O Nanocolumn Array," Journal of Physical Chemistry C, 120(2), 1077-1082, (2016).
[113] X. S. Jiang, M. Zhang, S. W. Shi, G. He, X. P. Song, and Z. Q. Sun, "Influence of Applied Potential on the Band Gap of Cu/Cu2O Thin Films," Journal of the Electrochemical Society, 161(12), D640-D643, (2014).
[114] D. Chen, Z. F. Liu, Z. G. Guo, W. G. Yan, and Y. Xin, "Enhancing light harvesting and charge separation of Cu2O photocathodes with spatially separated noble-metal cocatalysts towards highly efficient water splitting," Journal of Materials Chemistry A, 6(41), 20393-20401, (2018).
[115] H. Sim, J. Lee, S. Cho, E. S. Cho, and S. J. Kwon, "A Study on the Band Structure of ZnO/CdS Heterojunction for CIGS Solar-Cell Application," Journal of Semiconductor Technology and Science, 15(2), 267-275, (2015).
[116] S. Trasatti, "THE ABSOLUTE ELECTRODE POTENTIAL - AN EXPLANATORY NOTE (RECOMMENDATIONS 1986)," Pure and Applied Chemistry, 58(7), 955-966, (1986).
[117] C. R. Jiang, S. J. A. Moniz, A. Q. Wang, T. Zhang, and J. W. Tang, "Photoelectrochemical devices for solar water splitting - materials and challenges," Chemical Society Reviews, 46(15), 4645-4660, (2017).