簡易檢索 / 詳目顯示

研究生: 李育賢
Li, Yu-Xian
論文名稱: FTO基板上利用水熱法製備p-Cu2O/n-ZnO異質接面膜及其相關應用之研究
Hydrothermal Fabrication of p-Cu2O/n-ZnO Heterojunction Films on FTO and Their Applications
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 113
中文關鍵詞: 水熱法旋轉塗佈法p-Cu2O/n-ZnO 異質接面膜光降解異質接面二極體
外文關鍵詞: hydrothermal method, spin-coating method, p-Cu2O/n-ZnO heterojunction film, photodegradation, heterojunction diode
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文成功地直接在FTO基板上利用簡便的水熱法輔以旋轉塗佈法製備出p-Cu2O/n-ZnO 異質接面膜。本研究主要透過XRD、SEM、TEM和XPS進行材料的相鑑定、表面形貌觀察以及組成元素的束縛能分布分析。

    此p-Cu2O/n-ZnO 異質接面膜可被應用於亞甲藍(MB)水溶液的光降解。經過三小時的光照射,大約80%的亞甲藍水溶液會被降解且其降解反應常數(k)約為8.9 × 10-3 min-1。此外,藉由UV-Vis及UPS的結果所繪製出的能帶圖,我們推測直接型Z-scheme的異質接合是造成p-Cu2O/n-ZnO 異質接面膜的光降解效率得以被提升之可能的機制。而從Al/n-ZnO/p-Cu2O/FTO異質接面二極體的電流密度-電壓(J-V)之特性來看,其在黑暗中具有優異的整流效果。然而,在-3V的逆向偏壓下照射紫外光,其電流密度和在黑暗中相比可被提升將近80倍,這也意味著這個二極體具備優異的紫外光感測性質。

    A p-Cu2O/n-ZnO heterojunction film was directly fabricated on fluorine-doped tin oxide (FTO) substrate through a facile hydrothermal method with the assistance of a spin-coating method in this study. The crystal phases, surface morphology, and binding states of constituent elements and their distribution were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS).

    A p-Cu2O/n-ZnO heterojunction film was applied to the photodegradation of methylene blue (MB). After 3-h illumination, approximately 80 % of MB was degraded and the degradation rate constant (k) was approximately 8.9 × 10-3 min-1. Moreover, a direct Z-scheme heterojunction was proposed as a potential mechanism for the improvement of photodegradation efficiency based on the energy band diagram, which was constructed from the UV-Vis and UPS results. The current density-voltage (J-V) characteristics of an Al/n-ZnO/p-Cu2O/FTO heterojunction diode showed an excellent rectifying behavior in the dark while the current density under illumination increased approximately 80 times at a reverse bias of -3 V compared with that in the dark, implying an excellent UV sensing property of the sample.

    摘要 I Abstract II 誌謝 III Contents V Figure Contents XI Table Contents XIX Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Introduction to hydrothermal technology 1 1.1.2 Photocatalyst 1 1.1.3 Photodegradation 2 1.1.3.1 Mechanism 2 1.1.3.2 Common photocatalysts 3 1.1.3.3 Strategies to improve photodegradation efficiency 3 1.1.3.3.1 Morphology control 3 1.1.3.3.2 Doping 4 1.1.3.3.3 Composite (heterojunction materials) 5 1.1.3.3.4 Surface plasmon resonance (SPR) 6 1.1.4 Photodiode 7 1.1.4.1 Energy band theory of semiconductor 7 1.1.4.2 Theory of p-n junction 9 1.1.4.3 Metrics of a photodiode 11 1.1.4.3.1 Responsivity (R) 11 1.1.4.3.2 Response time 12 1.2 Cuprous oxide (Cu2O) 13 1.2.1 Crystal structure and property 13 1.2.2 Synthetic method 14 1.2.2.1 Wet chemical reduction 14 1.2.2.2 Electrodeposition 14 1.2.2.3 Sputtering 15 1.2.2.4 Spin-coating method 16 1.2.2.5 Hydrothermal synthesis 17 1.2.3 Morphology control of Cu2O 19 1.2.4 Applications of Cu2O 22 1.2.4.1 Photodegradation 22 1.2.4.2 PEC water splitting 23 1.2.4.3 Sensors 25 1.3 Zinc oxide (ZnO) 27 1.3.1 Crystal structure and properties 27 1.3.2 Synthetic methods 28 1.3.2.1 Sputtering 28 1.3.2.2 Molecular beam epitaxy (MBE) 29 1.3.2.3 Pulsed laser deposition (PLD) 29 1.3.2.4 Chemical vapor deposition (CVD) 30 1.3.2.5 Chemical bath deposition (CBD) 31 1.3.2.6 Hydrothermal synthesis 31 1.3.3 Morphology control of ZnO 33 1.3.4 Applications of ZnO 35 1.3.4.1 Photodegradation 36 1.3.4.2 Nanogenerator 36 1.3.4.3 Gas sensor 37 1.4 Cu2O/ZnO heterojunction (composite) 39 1.4.1 Diverse heterojunction (composite) systems 39 1.4.2 Characterization of a p-n junction 45 1.4.2.1 Mott-Schottky (M-S) measurement 45 1.4.2.2 I-V curve (rectifying behavior) 47 1.4.3 Applications of Cu2O/ZnO heterojunction (composite) 47 1.4.3.1 Photodegradation 47 1.4.3.2 Photodiode 49 1.5 Motivation and research objectives 52 Chapter 2 Experimental methods 53 2.1 Materials 53 2.1.1 Chemicals for spin-coating method 53 2.1.2 Chemicals for hydrothermal method 53 2.1.3 Chemicals for substrate cleaning 54 2.1.4 Substrate 54 2.2 Experimental procedure 55 2.2.1 Substrate cleaning 55 2.2.2 Fabrication of Cu2O films 55 2.2.2.1 Step I: spin-coating method (Cu2O seed layer) 55 2.2.2.2 Step II: hydrothermal method (hydrothermal Cu2O film) 55 2.2.3 Fabrication of the Cu2O/ZnO heterojunction films 56 2.2.4 Deposition of top electrodes (aluminum (Al)) 57 2.3 Characterization 59 2.3.1 X-ray diffraction (XRD) analysis 59 2.3.2 Scanning electron microscopy (SEM) 59 2.3.3 Focused ion beam (FIB) system 60 2.3.4 Transmission electron microscope (TEM) 61 2.3.5 Ultraviolet-Visible (UV-Vis) spectroscopy 62 2.3.6 X-ray Photoelectron Spectroscopy (XPS) 63 2.3.7 Ultraviolet photoelectron spectroscopy (UPS) 64 2.4 Mott-Schottky (M-S) measurement 65 2.5 Photodegradation measurement 65 2.6 J-V measurement 67 Chapter 3 Results and discussion 69 3.1 Fabrication of Cu2O 69 3.1.1 Cu2O seed layer (spin-coating method) 69 3.1.2 Cu2O films (hydrothermal method) 70 3.1.2.1 PVA as a complex agent 70 3.1.2.2 pH effect 72 3.1.2.3 Reducing agent effect 74 3.1.2.4 Substrate effect 75 3.1.3 Comparison between Cu2O seed layer and hydrothermal Cu2O film 77 3.2 Fabrication of Cu2O/ZnO heterojunction films 78 3.2.1 Cu2O seed layer (nanoparticle)/ZnO heterojunction films 78 3.2.2 Hydrothermal Cu2O film (polyhedron)/ZnO heterojunction 81 3.3 TEM analysis 83 3.4 XPS analysis 85 3.5 Energy band diagram construction 87 3.5.1 UV-Vis spectra (Band gap derivation) 87 3.5.2 UPS analysis 89 3.5.3 Energy band diagram 92 3.6 M-S measurement 93 3.7 Applications 95 3.7.1 Photodegradation 95 3.7.2 J-V measurement (diode performance) 98 Chapter 4 Conclusions and future work 100 4.1 Conclusions 100 4.2 Future work 101 Chapter 5 References 102

    [1] K. Byrappa and T. Adschiri, "Hydrothermal technology for nanotechnology," Progress in Crystal Growth and Characterization of Materials, 53(2), 117-166, (2007).
    [2] M. O'donoghue, "A guide to Man-made Gemstones," New York (USA): Van Nostrand Reinhold Company, (1983).
    [3] J. K. Dong, H. Y. Xu, F. J. Zhang, C. Chen, L. Liu, and G. T. Wu, "Synergistic effect over photocatalytic active Cu2O thin films and their morphological and orientational transformation under visible light irradiation," Applied Catalysis a-General, 470, 294-302, (2014).
    [4] E. Husanu, V. Cappello, C. S. Pomelli, J. David, M. Gemmi, and C. Chiappe, "Chiral ionic liquid assisted synthesis of some metal oxides," Rsc Advances, 7(2), 1154-1160, (2017).
    [5] L. Cheng, Y. L. Tian, and J. D. Zhang, "Construction of p-n heterojunction film of Cu2O/alpha-Fe2O3 for efficiently photoelectrocatalytic degradation of oxytetracycline," Journal of Colloid and Interface Science, 526, 470-479, (2018).
    [6] F. B. Li and X. Z. Li, "The enhancement of photodegradation efficiency using Pt-TiO2 catalyst," Chemosphere, 48(10), 1103-1111, (2002).
    [7] C. G. Tian, Q. Zhang, A. P. Wu, M. J. Jiang, Z. L. Liang, B. J. Jiang, and H. G. Fu, "Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation," Chemical Communications, 48(23), 2858-2860, (2012).
    [8] S. C. Yan, Z. S. Li, and Z. G. Zou, "Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine," Langmuir, 25(17), 10397-10401, (2009).
    [9] A. Bhattacharjee, M. Ahmaruzzaman, and T. Sinha, "A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds," Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 136, 751-760, (2015).
    [10] Z. Yu, B. S. Yin, F. Y. Qu, and X. Wu, "Synthesis of self-assembled CdS nanospheres and their photocatalytic activities by photodegradation of organic dye molecules," Chemical Engineering Journal, 258, 203-209, (2014).
    [11] J. Lin, J. Lin, and Y. F. Zhu, "Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance," Inorganic Chemistry, 46(20), 8372-8378, (2007).
    [12] N. Wang, X. Y. Li, Y. X. Wang, X. Quan, and G. H. Chen, "Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method," Chemical Engineering Journal, 146(1), 30-35, (2009).
    [13] A. O. Ibhadon and P. Fitzpatrick, "Heterogeneous Photocatalysis: Recent Advances and Applications," Catalysts, 3(1), 189-218, (2013).
    [14] T. Z. Zhang, L. Q. Ge, X. Wang, and Z. Z. Gu, "Hollow TiO2 containing multilayer nanofibers with enhanced photocatalytic activity," Polymer, 49(12), 2898-2902, (2008).
    [15] J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, "Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition," Advanced Materials, 16(18), 1661-1664, (2004).
    [16] S. Z. Hu, L. Ma, J. G. You, F. Y. Li, Z. P. Fan, G. Lu, D. Liu, and J. Z. Gui, "Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus," Applied Surface Science, 311, 164-171, (2014).
    [17] Z. M. El-Bahy, A. A. Ismail, and R. M. Mohamed, "Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue)," Journal of Hazardous Materials, 166(1), 138-143, (2009).
    [18] N. Sobana, M. Muruganadham, and M. Swaminathan, "Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes," Journal of Molecular Catalysis a-Chemical, 258(1-2), 124-132, (2006).
    [19] S. X. Liu and X. Y. Chen, "A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation," Journal of Hazardous Materials, 152(1), 48-55, (2008).
    [20] X. W. Zou, H. Q. Fan, Y. M. Tian, and S. J. Yan, "Synthesis of Cu2O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity," Crystengcomm, 16(6), 1149-1156, (2014).
    [21] Z. C. Wang, J. H. Liu, and W. Chen, "Plasmonic Ag/AgBr nanohybrid: synergistic effect of SPR with photographic sensitivity for enhanced photocatalytic activity and stability," Dalton Transactions, 41(16), 4866-4870, (2012).
    [22] W. B. Hou and S. B. Cronin, "A Review of Surface Plasmon Resonance-Enhanced Photocatalysis," Advanced Functional Materials, 23(13), 1612-1619, (2013).
    [23] S. W. Zhang, B. P. Zhang, S. Li, X. Y. Li, and Z. C. Huang, "SPR enhanced photocatalytic properties of Au-dispersed amorphous BaTiO3 nanocomposite thin films," Journal of Alloys and Compounds, 654, 112-119, (2016).
    [24] C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, "Surface-Plasmon-Enhanced Ultraviolet Random Lasing from ZnO Nanowires Assisted by Pt Nanoparticles," Applied Physics Express, 5(6), 062003, (2012).
    [25] 林宏勳,「用電化學沉積法製備氧化亞銅/氧化鋅之p-n異質接面型太陽能電池之研究」,國立東華大學光電工程學系,碩士論文,2013。
    [26] 詹益明,「氧化亞銅-氧化鋅異質接面太陽能電池之研製」,國立臺灣科技大學工程技術研究所,碩士論文,2010。
    [27] G. Sun, "Intersubband approach to silicon based lasers-circumventing the indirect bandgap limitation," Advances in Optics and Photonics, 3(1), 53-87, (2011).
    [28] D. A. Neamen, "Semiconductor physics and devices: basic principles," New York (USA): McGraw-Hill, (2012).
    [29] C. Wang, J. P. Xu, S. B. Shi, Y. Z. Zhang, Y. Y. Gao, Z. M. Liu, X. G. Zhang, and L. Li, "Optimizing performance of Cu2O/ZnO nanorods heterojunction based self-powered photodetector with ZnO seed layer," Journal of Physics and Chemistry of Solids, 103, 218-223, (2017).
    [30] Y. H. Ok, K. R. Lee, B. O. Jung, Y. H. Kwon, and H. K. Cho, "All oxide ultraviolet photodetectors based on a p-Cu2O film/n-ZnO heterostructure nanowires," Thin Solid Films, 570, 282-287, (2014).
    [31] M. Patel, H. S. Kim, and J. Kim, "All Transparent Metal Oxide Ultraviolet Photodetector," Advanced Electronic Materials, 1(11), 1500232, (2015).
    [32] J. S. Yoon, J. W. Lee, and Y. M. Sung, "Enhanced photoelectrochemical properties of Z-scheme ZnO/p-n Cu2O PV-PEC cells," Journal of Alloys and Compounds, 771, 869-876, (2019).
    [33] S. J. Chen, L. M. Lin, J. Y. Liu, P. W. Lv, X. P. Wu, W. F. Zheng, Y. Qu, and F. C. Lai, "An electrochemical constructed p-Cu2O/n-ZnO heterojunction for solar cell," Journal of Alloys and Compounds, 644, 378-382, (2015).
    [34] W. F. Zheng, Y. Chen, X. H. Peng, K. H. Zhong, Y. B. Lin, and Z. G. Huang, "The Phase Evolution and Physical Properties of Binary Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering," Materials, 11(7), 1253, (2018).
    [35] P. A. Korzhavyi and B. Johansson, "Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation," Stockholm (Sweden): Swedish Nuclear Fuel and Waste Management Co., (2011).
    [36] P. Scardi and M. Leoni, "On the crystal structure of nanocrystalline Cu2O," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 393(1-2), 396-397, (2005).
    [37] L. Gao, C. Pang, D. F. He, L. M. Shen, A. Gupta, and N. Z. Bao, "Synthesis of Hierarchical Nanoporous Microstructures via the Kirkendall Effect in Chemical Reduction Process," Scientific Reports, 5, 16061, (2015).
    [38] J. Y. Ho and M. H. Huang, "Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity," Journal of Physical Chemistry C, 113(32), 14159-14164, (2009).
    [39] T. F. Jiang, T. F. Xie, W. S. Yang, L. P. Chen, H. M. Fan, and D. J. Wang, "Photoelectrochemical and Photovoltaic Properties of p-n Cu2O Homojunction Films and Their Photocatalytic Performance," Journal of Physical Chemistry C, 117(9), 4619-4624, (2013).
    [40] F. Sun, Y. P. Guo, W. B. Song, J. Z. Zhao, L. Q. Tang, and Z. C. Wang, "Morphological control of Cu2O micro-nanostructure film by electrodeposition," Journal of Crystal Growth, 304(2), 425-429, (2007).
    [41] A. S. Reddy, S. Uthanna, and P. S. Reddy, "Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures," Applied Surface Science, 253(12), 5287-5292, (2007).
    [42] Y. F. Lim, C. S. Chua, C. J. J. Lee, and D. Z. Chi, "Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting," Physical Chemistry Chemical Physics, 16(47), 25928-25934, (2014).
    [43] A. Eskandari, P. Sangpour, and M. R. Vaezi, "Hydrophilic Cu2O nanostructured thin films prepared by facile spin coating method: Investigation of surface energy and roughness," Materials Chemistry and Physics, 147(3), 1204-1209, (2014).
    [44] Y. W. Tan, X. Y. Xue, Q. Peng, H. Zhao, T. H. Wang, and Y. D. Li, "Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios," Nano Letters, 7(12), 3723-3728, (2007).
    [45] Y. Chang and H. C. Zeng, "Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu2O microcrystals," Crystal Growth & Design, 4(2), 273-278, (2004).
    [46] R. Ji, W. D. Sun, and Y. Chu, "One-Step Hydrothermal Synthesis of a Porous Cu2O Film and Its Photoelectrochemical Properties," Chemphyschem, 14(17), 3971-3976, (2013).
    [47] L. Pan, J. J. Zou, T. R. Zhang, S. B. Wang, Z. Li, L. Wang, and X. W. Zhang, "Cu2O Film via Hydrothermal Redox Approach: Morphology and Photocatalytic Performance," Journal of Physical Chemistry C, 118(30), 16335-16343, (2014).
    [48] W. Y. Zhao, W. Y. Fu, H. B. Yang, C. J. Tian, M. H. Li, Y. X. Li, L. N. Zhang, Y. M. Sui, X. M. Zhou, H. Chen, and G. T. Zou, "Electrodeposition of Cu2O films and their photoelectrochemical properties," Crystengcomm, 13(8), 2871-2877, (2011).
    [49] Y. L. Liu, Y. C. Liu, R. Mu, H. Yang, C. L. Shao, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, "The structural and optical properties of Cu2O films electrodeposited on different substrates," Semiconductor Science and Technology, 20(1), 44-49, (2005).
    [50] H. Yang and Z. H. Liu, "Facile Synthesis, Shape Evolution, and Photocatalytic Activity of Truncated Cuprous Oxide Octahedron Microcrystals with Hollows," Crystal Growth & Design, 10(5), 2064-2067, (2010).
    [51] Y. Zhang, B. Deng, T. R. Zhang, D. M. Gao, and A. W. Xu, "Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity," Journal of Physical Chemistry C, 114(11), 5073-5079, (2010).
    [52] S. D. Sun, X. J. Zhang, Q. Yang, S. H. Liang, X. Z. Zhang, and Z. M. Yang, "Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications," Progress in Materials Science, 96, 111-173, (2018).
    [53] M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, and K. Domen, "Cu2O as a photocatalyst for overall water splitting under visible light irradiation," Chemical Communications, (3), 357-358, (1998).
    [54] J. S. Luo, L. Steier, M. K. Son, M. Schreier, M. T. Mayer, and M. Gratzel, "Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting," Nano Letters, 16(3), 1848-1857, (2016).
    [55] A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, and E. Thimsen, "Highly active oxide photocathode for photoelectrochemical water reduction," Nature Materials, 10(6), 456-461, (2011).
    [56] X. J. Wan, J. L. Wang, L. F. Zhu, and J. N. Tang, "Gas sensing properties of Cu2O and its particle size and morphology-dependent gas-detection sensitivity," Journal of Materials Chemistry A, 2(33), 13641-13647, (2014).
    [57] S. Felix, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, "Electrocatalytic activity of Cu2O nanocubes-based electrode for glucose oxidation," Journal of Chemical Sciences, 126(1), 25-32, (2014).
    [58] H. Lahmar, F. Setifi, A. Azizi, G. Schmerber, and A. Dinia, "On the electrochemical synthesis and characterization of p-Cu2O/n-ZnO heterojunction," Journal of Alloys and Compounds, 718, 36-45, (2017).
    [59] V. Srikant and D. R. Clarke, "On the optical band gap of zinc oxide," Journal of Applied Physics, 83(10), 5447-5451, (1998).
    [60] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, 98(4), 041301, (2005).
    [61] B. Meyer and D. Marx, "Density-functional study of the structure and stability of ZnO surfaces," Physical Review B, 67(3), 035403, (2003).
    [62] P. F. Carcia, R. S. Mclean, M. H. Reilly, and G. Nunes, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, 82(7), 1117-1119, (2003).
    [63] W. T. Chiou, W. Y. Wu, and J. M. Ting, "Growth of single crystal ZnO nanowires using sputter deposition," Diamond and Related Materials, 12(10-11), 1841-1844, (2003).
    [64] A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, and A. Waag, "High-quality ZnO layers grown by MBE on sapphire," Superlattices and Microstructures, 38(4-6), 265-271, (2005).
    [65] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe, S. Fujita, and S. Fujita, "Effects of oxygen plasma condition on MBE growth of ZnO," Journal of Crystal Growth, 209(2-3), 522-525, (2000).
    [66] B. Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, and T. Okada, "ZnO Nanowalls Grown with High-Pressure PLD and Their Applications as Field Emitters and UV Detectors," Journal of Physical Chemistry C, 113(25), 10975-10980, (2009).
    [67] D. Barreca, D. Bekermann, E. Comini, A. Devi, R. A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, and E. Tondello, "1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases," Sensors and Actuators B-Chemical, 149(1), 1-7, (2010).
    [68] X. Y. Duan, G. D. Chen, L. Guo, Y. Z. Zhu, H. G. Ye, and Y. L. Wu, "A template-free CVD route to synthesize hierarchical porous ZnO films," Superlattices and Microstructures, 88, 501-507, (2015).
    [69] P. Obrien, T. Saeed, and J. Knowles, "Speciation and the nature of ZnO thin films from chemical bath deposition," Journal of Materials Chemistry, 6(7), 1135-1139, (1996).
    [70] S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Science and Technology of Advanced Materials, 10(1), 013001, (2009).
    [71] B. Baruwati, D. K. Kumar, and S. V. Manorama, "Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH," Sensors and Actuators B-Chemical, 119(2), 676-682, (2006).
    [72] M. Guo, P. Diao, and S. M. Cai, "Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties," Applied Surface Science, 249(1-4), 71-75, (2005).
    [73] R. Wahab, S. G. Ansari, Y. S. Kim, H. K. Seo, G. S. Kim, G. Khang, and H. S. Shin, "Low temperature solution synthesis and characterization of ZnO nano-flowers," Materials Research Bulletin, 42(9), 1640-1648, (2007).
    [74] S. N. Sun, B. Mari, H. L. Wu, M. Mollar, and H. N. Cui, "Morphology and photoluminescence study of electrodeposited ZnO films," Applied Surface Science, 257(3), 985-989, (2010).
    [75] J. M. Jang, S. D. Kim, H. M. Choi, J. Y. Kim, and W. G. Jung, "Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process," Materials Chemistry and Physics, 113(1), 389-394, (2009).
    [76] J. H. Yang, J. H. Zheng, H. J. Zhai, X. M. Yang, L. L. Yang, Y. Liu, J. H. Lang, and M. Gao, "Oriented growth of ZnO nanostructures on different substrates via a hydrothermal method," Journal of Alloys and Compounds, 489(1), 51-55, (2010).
    [77] Y. L. Chen, L. C. Kuo, M. L. Tseng, H. M. Chen, C. K. Chen, H. J. Huang, R. S. Liu, and D. P. Tsai, "ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange," Optics Express, 21(6), 7240-7249, (2013).
    [78] Y. Xi, J. H. Song, S. Xu, R. S. Yang, Z. Y. Gao, C. G. Hu, and Z. L. Wang, "Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators," Journal of Materials Chemistry, 19(48), 9260-9264, (2009).
    [79] S. Xu, Y. G. Wei, J. Liu, R. Yang, and Z. L. Wang, "Integrated Multilayer Nanogenerator Fabricated Using Paired Nanotip-to-Nanowire Brushes," Nano Letters, 8(11), 4027-4032, (2008).
    [80] J. H. Song, J. Zhou, and Z. L. Wang, "Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment," Nano Letters, 6(8), 1656-1662, (2006).
    [81] Z. L. Wang and J. H. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, 312(5771), 242-246, (2006).
    [82] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Applied Physics Letters, 84(18), 3654-3656, (2004).
    [83] J. Q. Xu, Q. Y. Pan, Y. A. Shun, and Z. Z. Tian, "Grain size control and gas sensing properties of ZnO gas sensor," Sensors and Actuators B-Chemical, 66(1-3), 277-279, (2000).
    [84] H. J. Li, Y. Zhou, W. G. Tu, J. H. Ye, and Z. G. Zou, "State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance," Advanced Functional Materials, 25(7), 998-1013, (2015).
    [85] S. Bai, J. Jiang, Q. Zhang, and Y. J. Xiong, "Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations," Chemical Society Reviews, 44(10), 2893-2939, (2015).
    [86] R. Marschall, "Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity," Advanced Functional Materials, 24(17), 2421-2440, (2014).
    [87] Z. Fang, Y. F. Liu, Y. T. Fan, Y. H. Ni, X. W. Wei, K. B. Tang, J. M. Shen, and Y. Chen, "Epitaxial Growth of CdS Nanoparticle on Bi2S3 Nanowire and Photocatalytic Application of the Heterostructure," Journal of Physical Chemistry C, 115(29), 13968-13976, (2011).
    [88] Y. Liu, Y. X. Yu, and W. D. Zhang, "MoS2/CdS Heterojunction with High Photoelectrochemical Activity for H-2 Evolution under Visible Light: The Role of MoS2," Journal of Physical Chemistry C, 117(25), 12949-12957, (2013).
    [89] F. Opoku, K. K. Govender, C. Van Sittert, and P. P. Govender, "Recent Progress in the Development of Semiconductor-Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants," Advanced Sustainable Systems, 1(7), 1700006, (2017).
    [90] M. L. Li, L. X. Zhang, X. Q. Fan, Y. J. Zhou, M. Y. Wu, and J. L. Shi, "Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light," Journal of Materials Chemistry A, 3(9), 5189-5196, (2015).
    [91] A. Y. Meng, B. C. Zhu, B. Zhong, L. Y. Zhang, and B. Cheng, "Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H-2-production activity," Applied Surface Science, 422, 518-527, (2017).
    [92] Z. Chen, H. Dinh, and E. Miller, "Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols," New York (USA): Springer, (2013).
    [93] J. H. Zheng and L. Zhang, "Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability," Applied Catalysis B-Environmental, 237, 1-8, (2018).
    [94] Q. Li, F. Shan, B. L. Sun, Y. Song, F. Wang, and J. Ji, "Photo-assisted electrocatalysis of CdS-MoS2 hybrid for hydrogen evolution reaction: Morphology-dependent photoelectroactivity of p-n junction photocathode under bias potential," International Journal of Hydrogen Energy, 42(8), 5549-5559, (2017).
    [95] X. S. Wang, Y. D. Zhang, Q. C. Wang, B. Dong, Y. J. Wang, and W. Feng, "Photocatalytic activity of Cu2O/ZnO nanocomposite for the decomposition of methyl orange under visible light irradiation," Science and Engineering of Composite Materials, 26(1), 104-113, (2019).
    [96] P. H. Hsiao, T. C. Li, and C. Y. Chen, "ZnO/Cu2O/Si Nanowire Arrays as Ternary Heterostructure-Based Photocatalysts with Enhanced Photodegradation Performances," Nanoscale Research Letters, 14, 244, (2019).
    [97] A. Kathalingam, D. Vikraman, H. S. Kim, and H. J. Park, "Facile fabrication of n-ZnO nanorods/p-Cu2O heterojunction and its photodiode property," Optical Materials, 66, 122-130, (2017).
    [98] V. Sedlarik, N. Saha, I. Kuritka, and P. Saha, "Environmentally friendly biocomposites based on waste of the dairy industry and poly(vinyl alcohol)," Journal of Applied Polymer Science, 106(3), 1869-1879, (2007).
    [99] N. Takeno, "Atlas of Eh-pH diagrams," Tokyo (Japan): National Institute of Advanced Industrial Science and Technology, (2005).
    [100] X. Y. Liu, R. Z. Hu, S. L. Xiong, Y. K. Liu, L. L. Chai, K. Y. Bao, and Y. T. Qian, "Well-aligned Cu2O nanowire arrays prepared by an ethylene glycol-reduced process," Materials Chemistry and Physics, 114(1), 213-216, (2009).
    [101] A. Mitra, P. Howli, D. Sen, B. Das, and K. K. Chattopadhyay, "Cu2O/g-C3N4 nanocomposites: an insight into the band structure tuning and catalytic efficiencies," Nanoscale, 8(45), 19099-19109, (2016).
    [102] W. Z. Tawfik, M. A. Hassan, M. A. Johar, S. W. Ryu, and J. K. Lee, "Highly conversion efficiency of solar water splitting over p-Cu2O/ZnO photocatalyst grown on a metallic substrate," Journal of Catalysis, 374, 276-283, (2019).
    [103] J. Q. Pan, C. Zhao, X. F. Wei, C. Y. Chi, W. J. Zhao, C. S. Song, Y. Y. Zheng, and C. R. Li, "p-n junction induced electron injection type transparent photosensitive film of Cu2O/carbon quantum dots/ZnO," Nanotechnology, 29(8), 085202, (2018).
    [104] T. Wang, B. J. Jin, Z. B. Jiao, G. X. Lu, J. H. Ye, and Y. P. Bi, "Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances," Journal of Materials Chemistry A, 2(37), 15553-15559, (2014).
    [105] Y. T. Wang, Y. Y. Lu, W. W. Zhan, Z. X. Xie, Q. Kuang, and L. S. Zheng, "Synthesis of porous Cu2O/CuO cages using Cu-based metal-organic frameworks as templates and their gas-sensing properties," Journal of Materials Chemistry A, 3(24), 12796-12803, (2015).
    [106] R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, "XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods," Ceramics International, 39(3), 2283-2292, (2013).
    [107] A. B. Murphy, "Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting," Solar Energy Materials and Solar Cells, 91(14), 1326-1337, (2007).
    [108] A. P. Finlayson, V. N. Tsaneva, L. Lyons, M. Clark, and B. A. Glowacki, "Evaluation of Bi-W-oxides for visible light photocatalysis," Physica Status Solidi a-Applications and Materials Science, 203(2), 327-335, (2006).
    [109] A. Janotti and C. G. Van De Walle, "Fundamentals of zinc oxide as a semiconductor," Reports on Progress in Physics, 72(12), 126501, (2009).
    [110] S. Banerjee and D. Chakravorty, "Optical absorption by nanoparticles of Cu2O," Europhysics Letters, 52(4), 468-473, (2000).
    [111] J. Y. Pan, C. F. Yang, and Y. L. Gao, "Investigations of Cuprous Oxide and Cupric Oxide Thin Films by Controlling the Deposition Atmosphere in the Reactive Sputtering Method," Sensors and Materials, 28(7), 817-824, (2016).
    [112] I. Mukherjee, S. Chatterjee, and N. A. Kulkarni, "Band Gap Tuning and Room-Temperature Photoluminescence of a Physically Self-Assembled Cu2O Nanocolumn Array," Journal of Physical Chemistry C, 120(2), 1077-1082, (2016).
    [113] X. S. Jiang, M. Zhang, S. W. Shi, G. He, X. P. Song, and Z. Q. Sun, "Influence of Applied Potential on the Band Gap of Cu/Cu2O Thin Films," Journal of the Electrochemical Society, 161(12), D640-D643, (2014).
    [114] D. Chen, Z. F. Liu, Z. G. Guo, W. G. Yan, and Y. Xin, "Enhancing light harvesting and charge separation of Cu2O photocathodes with spatially separated noble-metal cocatalysts towards highly efficient water splitting," Journal of Materials Chemistry A, 6(41), 20393-20401, (2018).
    [115] H. Sim, J. Lee, S. Cho, E. S. Cho, and S. J. Kwon, "A Study on the Band Structure of ZnO/CdS Heterojunction for CIGS Solar-Cell Application," Journal of Semiconductor Technology and Science, 15(2), 267-275, (2015).
    [116] S. Trasatti, "THE ABSOLUTE ELECTRODE POTENTIAL - AN EXPLANATORY NOTE (RECOMMENDATIONS 1986)," Pure and Applied Chemistry, 58(7), 955-966, (1986).
    [117] C. R. Jiang, S. J. A. Moniz, A. Q. Wang, T. Zhang, and J. W. Tang, "Photoelectrochemical devices for solar water splitting - materials and challenges," Chemical Society Reviews, 46(15), 4645-4660, (2017).

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE