簡易檢索 / 詳目顯示

研究生: 張雅婷
Chang, Ya-Ting
論文名稱: 50~80 nm均一晶徑之α-Al2O3粉末的製作
Fabrication of Nano-sized α-Al2O3 Powders with Sizes Ranging from 50 to 80 nm
指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 77
中文關鍵詞: 氧化鋁奈米級晶徑
外文關鍵詞: nano-sized, α-Al2O3
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為設計一含鋁成份的凝聚體,用它來製造均一晶徑之50~80 nm α-Al2O3粉末。實驗利用Boehmite與θ-Al2O3為原料,藉控制漿料之pH值使其達分散-凝聚效果,進而製造平均粒徑32 nm (S4A, pH= 4) 與163 nm (S6A, pH= 6) 之θ-Al2O3-boehmite凝聚體。將兩種粒徑凝聚體之漿料分別利用直接微波烘乾與陳化 24小時後烘乾的方法獲得四種實驗用起始樣品,在透過熱處理得到α-Al2O3粉末。實驗中以粒徑分佈儀觀察製程中凝聚體的大小,以DTA觀察混合凝聚體的熱行為,並藉BET與TEM技術了解所得α-Al2O3晶粒之外型及尺寸。
    研究結果顯示:(1) 經陳化處理 (平衡穩定) 後的漿料系統反應發生的時間較短且集中。也因此可獲得均一性質之α-Al2O3粉末。(2) 分散良好 (pH=4) 之系統 (30 nm凝聚體) 無論是否經過陳化處理,其熱反應皆呈類均質反應。但產出粒徑不均一粉末。而pH=6, 160 nm凝聚體凝聚系統需經陳化處理 (穩定後) 始可發生類均質反應,應可產出粒徑均一的α-Al2O3粒子。(3) 若α-生成量90 wt%以下 (產生退變) 的氧化鋁粉末較易有馬賽克構造出現。(4) α-Al2O3粒徑成長超過100 nm後,蠕蟲狀成長的現象仍難以避免。其發生應源於不均一微結構的凝聚體。(5) 在凝聚且穩定系統(pH = 6)中凝聚體之堆積密度為28%。

    Fabrication of α-Al2O3 powders with uniform sizes ranging from 50- 80 nm by calcination of aluminum-based agglomerates was examined in this study. The θ-Al2O3-boehmite agglomerates with average sizes of 32 nm (designated as S4, at pH = 4) and 163 nm (designated as S6, at pH = 6) in the slurries were prepared by pH adjustment, respectively, using boehmtie and θ-Al2O3 particles as raw materials. Four dry powders prepared by microwave-drying of unaged and 24 hr-aged slurries, respectively, were obtained. And the α-Al2O3 powders were obtained through appropriate thermal treatments. During the process, the size of agglomerates and the thermal behaviors of the dry powders were examined by dynamic light scattering method and DTA techniques, respectively. Furthermore, the morphology and particle sizes of the α-Al2O3 particles were investigated by TEM and BET-N2 (Brunauer-Emmett-Teller) techniques. The results are shown as followings:
    (1) The reaction of the α-Al2O3 formation can be concentrated as the powders of aged slurries were used, therefore the α-Al2O3 powders with uniform sizes could be fabricated.
    (2) As long as the θ-Al2O3-boehmite slurries were well-dispersed (at pH = 4, agglomerate size ~30 nm), they could show similar outlines of exothermic peaks of θ- to α-Al2O3 phase transformation, no matter the slurry was aged or not. However, α-Al2O3 powders calcined from them show un-uniform particles sizes. The dry powders obtained from aged slurries at pH = 6(agglomerate size ~160 nm) performed qusai-homogeneous reactions, and α-Al2O3 powders with uniform particle sizes could be formed accompanied with suitable heat treatments.
    (3) The α-Al2O3 crystallites with vermicular growth occurs inevitably as the size is larger than ~ 100 nm, caused by agglomerates with un-uniform microstructure.
    (4) The packing density of agglomerates in sample S6A is 28%.

    中文摘要…………………………....................……………………………Ι Abstract...........................................................................................................Ⅱ 致謝................................................................................................................Ⅲ 目錄............................................................................................................... Ⅳ 表目錄……………………………………………………………….……Ⅵ 圖目錄………………………………………………………………....……Ⅶ 第一章 緒論…………………………………………………………………1 1.1前言………………………………………………………………………1 1.2研究動機與目的……………………………………………….…………2 第二章 理論基礎與前人研究…………………………………………….3 2.1 氧化鋁…………………………………………………………………3 2.1.1 單水鋁石(Boehmite)…………………………………………………3 2.1.2 θ-Al2O3…………………………………………………………………3 2.1.3 α-Al2O3…………………………………………………..…………......6 2.2 θ-→α-Al2O3相轉換熱力學………………………………………………6 2.3 θ-→α-Al2O3相轉換之DTA分析………………………………………...7 2.4 (奈米)粉體的分散與凝聚…………...................………………………13 2.4.1 粒子間作用力………………………………...................…………...13 2.4.2 兩種粒體的混合(均勻混合與core-shell)…...................……………15 2.4.3 以core-shell合成粉末的研究…………….....................……………17 2.5 陳化處理與陶瓷氧化物漿料之關係……………………….…………19 第三章 實驗步驟及方法…………………………………………….…..20 3.1 實驗設計…………………………………...……………………….….20 3.1.1 實驗構想………..……………………........…………………………20 3.1.2 如何執行構想......……........…...................………………………….20 3.2 實驗原料………………………………………………...……………..21 3.2.1 θ-Al2O3………………………………........…………………………21 3.2.2 boehmite………………........…...................………………………….21 3.3 實驗步驟與流程………………………………………………………27 3.4 特性分析……………………………………………………………..29 3.4.1 粉末結晶相分析……………………………………………………..29 3.4.2 熱差分析……………………………………………….…………….29 3.4.3 粉末比表面積粒徑..…………………………………………………29 3.4.4 α-Al2O3生成量定量分析…….......................…….............…………..30 3.4.5 粒徑分佈量測……………………………………………………….30 3.4.6 顯微影像及結構分析…………………….………………………….30 第四章 結果與討論……………….……………………………………….32 4.1 θ-Al2O3-boehmite凝聚體之粒徑分布………………………………….32 4.2 混合粉末之熱行為……………...……………………..........................36 4.3 BET值與α-Al2O3生成量之關係……………...………………….……38 4.4 α-Al2O3晶粒之顯微構造觀察………………………………….……41 4.5 50 ~80 nm α-Al2O3晶粒……………………………….....……………..49 第五章 結論……………………………………………………………….51 參考文獻……………………………………………………………………56 Appendices…………………………………………………………………60 自述……………………………………………………………………77

    1. M. Mazloumi, R. Khalifehzadeh, S. K. Sadrnezhaad, and H. Arami, “Alumina Nanopowder Production from Synthetic Bayer Liquor,” J. Am. Ceram. Soc., 89 [12] 3654-3657 (2006).
    2. C. N. Satterfield, Heterogeneous Catalysis in Practice. McGraw-Hill, NY, 1980.
    3. X. Bokhimi, J. S. Valente, and F. Pedraza, “Crystallization of Sol-Gel Boehmite Via Hydrothermal Annealing,” J. Solid State Chem., 166, 182-190 (2002).
    4. M. N. Rahaman, Ceramic Processing and Sintering, 2nd edition, Marcel Dekker Inc., USA, 2003.
    5. F. W. Dynys and J. W. Halloran, “Alpha Alumina Formation in Alum-Derived Gamma Alumina,” J. Am. Ceram. Soc., 65 [9] 442-448 (1982).
    6. P. A. Badkar and J. E. Bailey, “The Mechanism of Simultaneous Sintering and Phase Transformation in Alumina,” J. Mater. Sci., 11, 1794-1806 (1976).
    7. A. Tonejc, A. M. Tonejc, D. Bagović, and C. Kosanović, “Comparison of the Transformation Sequence from γ-AlOOH (boehmite) to α-Al2O3 (corundum) Induced by Heating and by Ball Milling,” Mater. Sci. Eng. A, 181, 1227-1231 (1994).
    8. Y. Wang, C Suryanarayana, and L. An, “Phase Transformation-Sized γ-Alumina by Mechanical Milling,” J. Am. Ceram. Soc., 88 [3] 780-783 (2005).
    9. S. Liu, L. Zhang, and L. An, “Phase Transformation of Mechanically Milled Nano-Sized γ-Alumina,” J. Am. Ceram. Soc., 88 [9] 2559-2563 (2005).
    10. P. K. Sharma, M. H. Jilavi, D. Burgard, R. Nass, and H. Schmidt, “Hydrothermal Synthesis of Nanosize α-Al2O3 from Seeded Aluminum Hydroxide,” J. Am. Ceram. Soc., 81 [10] 2732-2734 (1998).
    11. J. Yang, S. Mei, and José M. F. Ferreira, “Hydrothermal Synthesis of Submicrometer α-Alumina from Seeded Tetraethyl Ammonium Hydroxide -Peptized Aluminum Hydroxide,” J. Am. Ceram. Soc., 86 [12] 2055-2058 (2003).
    12. K. Kamiya, J. Yotani, R. Senba, J. Matsuoka, and H. Nasu, “Sol-Gel Preparation of Alumina Gels Forming α-Alumina around 500℃,” J. Ceram. Soc. Jap., Int. Edition, 104 [7] 685-687 (1996).
    13. 游佩青,類均質條件下奈米θ-Al2O3微粒之晶粒成長現象觀察,國立成功大學資源工程研究所,博士論文,2008年6月。
    14. 陳秀雯,利用Boehmite 分散及包覆θ-Al2O3粉生產30-50 nm α-Al2O3,國立成功大學資源工程研究所,碩士論文,2004年6月。
    15. P. C. Yu, R. J. Yang, Y. T. Chang, and F. S. Yen, ”Fabrication of Nano-scaled α-Al2O3 Crystallites Through Heterogenous Precipitation of Boehmite in a Well-Dispersed θ-Al2O3-Suspension,” J. Am. Ceram. Soc. 90 [8] 2340-2346 (2007).
    16. 王盟強,θ-Al2O3/boehmite水性漿料系統之pH值對製備奈米級α-Al2O3之影響,國立成功大學資源工程研究所,碩士論文,2008年1月。
    17. F. J. Ewing, “The Crystal Structure of Lepidocrocite,” J. Chem. Phys, 3, 420-454 (1935).
    18. B. C. Lippens and J. H. de Boer, “Study of Phase Transformations During Calcination of Aluminum Hydroxides by Selected Area Electron Diffraction,” Acta Crystallogr., 17, 1312-1321 (1964).
    19. K. Wefers and C. Misra., “Oxides and Hydroxides of Aluminum,” Alcoa Technical Paper No. 19, Alcoa Laboratories, Pittsburgh, PA, 1987.
    20. I. Levin and D. Brandon, “Metastable Alumina Polymorphs: Crystal Structures and Transition Seqences,” J. Am. Ceram. Soc., 81 [8] 1995-2012 (1998).
    21. J. A. Kohn, G. Katz, and J. D. Broder, “β-Ga2O3 and Its Alumina Isomorph, θ-Al2O3,” Am. Miner., 42, 398-408 (1957).
    22. Y. M. Chiang, D. P. Birnie, III, and W. D. Kingery, Physical Ceramics-Principles for Ceramic Science and Engineering, Wiley, New York, 1997.
    23. 溫惠玲,由Boehmite製得之氧化鋁粉末的θ→α-Al2O3相轉換,國立成功大學資源工程研究所,博士論文,2000年1月。
    24. H. L. Wen and F. S. Yen, “Growth Characteristics of Boehmite-Derived Ultrafine Theta and Alpha-Alumina Particles During Transformation,” J. Cryst. Growth, 208, 696-708 (2000).
    25. P. L. Chang, F. S. Yen, K. C. Cheng, and H. L. Wen, “Examination on the Critical and Primary Crystallite Sizes During θ- to α-Phase Transformation on Ultrafine Alumina Powders,” Nano Letters, 5, 253-261 (2001).
    26. R. J .Yang , P .C .Yu , C. C. Chen , and F. S. Yen ,“Reversible Phase Transformation of Nano-crystallite α-Al2O3 to θ-Al2O3,” J. Am. Ceram. Soc., Submitted.
    27. R. J. Pugh, L. Bergstrom, Surface and Colloid Chemistry in Advanced Ceramics Processing, Marcel Dekker, New York, 1994.
    28. 高濂、孫靜、劉陽橋,奈米粉體的分散及表面改性,五南圖書出版股份有限公司,1995年。
    29. R. J. Hunter, “Introduction to Modern Colloid Science,” Oxford Univ Pr, USA, 1993.
    30. Y. Yang, O. Chen, A. Angenrhofer, and Y. C. Cao, “Radial- Position- Controlled Doping in CdS/ZnS Core/Shell Nanocrystals,” J. Am. Chem. Soc., 128, 12428-12429 (2006).
    31. Y. F. Tang, L. Feng, Y. F. Chen, and A. D. Li, “Fabrication of Mullite Powders by a Novel Processing,” Adv. Eng. Mater., 6, 69-71 (2004).
    32. F. Caruso, “Nanoengineering of ParticleSurfaces,” Adv. Mater., 13, 11-22 (2001).
    33. X. C. Guo, and P. Dong, “Multistep Coating of Thick Titania Layers on Monodisperse Silica Nanospheres,” Langmuir, 15, 5535-5540 (1999).
    34. Z. Zhong, Y. Mastai, Y. Koltypin, Y. Zhao, and A. Gedanken, “Sonochemical Coating of Nanosized Nickel on Alumina Submicrospheres and the Interaction between the Nickel and Nickel Oxide with the Substrate,” Chem. Mater., 11, 2350-2359 (1999).
    35. M. Jayasankar, S. Ananthakumar, P. Mukundan, W. Wunderlich, and K. G. K. Warrier, “Al2O3@TiO2 - A Simple Sol-Gel Strategy to the Synthesis of Low Temperature Sintered Alumina-Aluminium Titanate Compssites Through a Core-Shell Approach,” J. Sol. St. Chem., accepted.
    36. E. Geuzens, G. Vanhoyland, J. D’Hean, S. Mullens, J. Luyten, M. K. Van Bael, H. Van den Rul, and J. Mullens, “ Synthesis of Zirconia-alumina and Alumina-ziconia Core-shell Particles via a Hetercoaugulation mechanism,” J. Eur. Ceram. Soc., 26, 3133-3138 (2006).
    37. D. J. Green, R. H. J. Hannink, and M. V. Swain, Transformation Toughening of Ceramics; Chpt. 4. CRC Press, Boca Raton, FL, 1989.
    38. C. Misra, Ed. Industrial Alumina Chemicals; ACS Monograph 184; American Chemical Society: Washington, DC, 1986.
    39. J. M. Rousseaux, P. Weisbecker, H. Muhr, and E. Plasari, “Aging of Precipitated Amorphous Alumina Gel,” Ind. Eng. Chem. Res., 41, 6059-6069 (2002).
    40. S. Dhara and P. Bhargava, “Influence of Nature and Amount of Dispersant on Rheology of Aged Aqueous Alumina Gelcasting Slurries,” J. Am. Ceram. Soc., 88 [3] 547–552 (2005).
    41. A. Mukherjee, R. Khan, B. Bera, and H. S. Maiti, “I: Dispersibility of robust alumina particles in non-aqueous solution,” Ceram. Int., 34, 523-529 (2008).
    42. O. Burgos-Montes, M. I. Nieto, and R. Moreno, “Mullite Compacts Obtained by Colloidal Filtrtation of Alumina Powders Dispersed in Colloidal Silica Suspensions,” Ceram. Int., 33, 327-332 (2007).

    下載圖示 校內:2009-08-29公開
    校外:2009-08-29公開
    QR CODE