| 研究生: |
鄧安琪 Teng, An-Chi |
|---|---|
| 論文名稱: |
風攻角與開窗角度對高層住宅建築之自然排煙影響 The Influence of Natural Exhaust of High-rise Dwelling Building by Approaching Wind Directions and Window-opening Angles. |
| 指導教授: |
曾俊達
Tzeng, Chun-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 高層建築 、自然排煙 、視流 、風洞實驗 |
| 外文關鍵詞: | high-rise building, natural exhaust, flow visualization, wind tunnel test |
| 相關次數: | 點閱:124 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在環境風工程領域,過去學者以探討舒適性及節能性居多,較少研究外部風場對於煙流之影響。排煙設備開啟時如果遇到不同的外部風場,煙流將因為排煙設備開啟的方向角度與開口大小而有變化,且進一步影響進入室內的流量。例如:造成排煙窗無法開啟或導入外部風壓造成煙流蓄積室內,嚴重危害高層建築物安全性。
建築技術規則只有規定自然排煙開口門扇之構造應注意不受開放排煙時所發生氣流之影響,並未提及如何使開口門扇不受開放排煙時所發生氣流之影響。
本研究對於高層建築物之排煙窗通風性能評估包括:不同風向角影響氣流導入建築物通風影響,開窗角度對建築物室內通風影響。經過風洞實驗及CFD模擬的數據比對及分析後,初步整理出建築物不同來流風攻角與開窗角度組合之煙流方式,並針對高層建築探討其應避免的排煙窗與風攻角的相對位置設置方式,並提出有效的自然排煙方式。
研究結果顯示,來流風攻角造成居室內流場流向的變化影響甚鉅,不論是相鄰或是相對兩側外牆開窗,只要其中一扇窗直接受到來流衝擊,皆能達到良好之通風效果。但是一旦來流與開窗位置平行、兩開窗皆位於來流背風側之尾流區域,居室內流場便會停滯。對於開窗角對於居室內風場的影響,研究發現開口風速不能作為判斷室內流場通風良好與否之唯一標準,雖然大部分開窗45 o與90 o時室內流場及開口風速降低,但室內流場之流動均勻度提高,窗扇產生導流板之功效。實驗結果顯示室內隔間與無室內隔間模型因外流場相同,兩者流動模式間最大之差異為,即使氣流流入角度不同,只要由同一側開窗流入,就會因隔間及開門位置被引導成相同的居室氣流流向。因此,氣流流動模式數量減少,結果較容易預測與分類。
SUMMARY
This research aims at the correlation between external wind field and smoke flow.The evaluating standards of high-rise building’s exhaust windows’ performance include the effect of different approaching wind directions and window-opening angles on building’s ventilation. After comparing and analyzing the results of wind tunnel experiments and CFD simulations, I concluded smoke flow patterns of different combination of approaching wind directions and window-opening angles, and aimed at discussing installing ways of relative position of exhaust windows for high-rise building, then proposed effective ways for natural exhaust.According to this research, it was found that approaching wind directions influence interior flow patterns dramatically. Either installing windows on walls next to each other or opposite walls, as long as one of the windows is buffeted by approaching wind directly, can achieve efficient ventilation. Experiment result shows that interior-compartments and open-layout models have the same external wind fields, and the interior-compartments model can lead flows with different entering angles but enter through the same installing windows into the same interior wind field by compartments and door position. Therefore, the results are easier to estimate and classified as the number of flow patterns decrease.
Keywords: high-rise building, natural exhaust, flow visualization, wind tunnel test
【C01】朱佳仁. (2006). 風工程概論. 科技圖書股份有限公司
【C02】中華人民共和國住房和城鄉建設部,中華人民共和國國家品質監督檢驗檢疫總局. (2012). 中國建築設計防火規範.
【C03】內政部. (102年4月(修訂本)). 建築技術規則.
【C04】國土交通省住宅局日本建築學會編. 日本建築基準法施行令.
【C05】邱健倫. (2007). 密閉空間火場模擬及熱應力分析. 國立成功大學,碩士論文
【E01】Lai, C. M. (2003). Experiments on the ventilation efficiency of turbine ventilators used for building and factory ventilation. Energy and Buildings Vol. 34, pp. 927-932.
【E02】Mistriotis, A. , Arcidianoco, C., Picuno, P., Bot, G.A., Scarascia Mugnozza, G., (1997). Computational analysis of the natural ventilation in greenhouses at low wind speed. Agricultural and Forest Meteorology Vol. 88, pp. 121-135.
【E03】Charles C.K. Cheng., K.M. Lam, Richard K.K. Yuen, S.M. Lo, J. Liang (2007). A study of natural ventilation in a refuge floor. Building and Environment Vol.42, pp. 3322–3332.
【E04】Chow, W.K. (2004). Wind-induced indoor-air flow in a high-rise building adjacent to a vertical wall. Applied Energy Vol.77, pp. 225-234
【E05】Ding, W. , Minegishi, Y., Hasemi, Y., Yamada, T. (2004). Smoke control based on a solar-assisted natural ventilation system. Building and Environmant Vol. 39, pp. 775-782.
【E06】Chen, H. , Liu, N., Chow, W. (2009). Wind effects on smoke motion and temperature of ventilation-controlled fire in a two-vent compartment. Building and Environment Vol. 44, pp. 2521-2526.
【E07】Short, C. A., G. E. Whittle & M. Owarish (2009). Fire and smoke control in naturally ventilated buildings. Building Research & Information Vol. 34, pp. 23-54.
【E08】Chow, W. K. , WY Hung, Y Gao, G Zou, H Dong (2007). Experimental study on smoke movement leading to glass damages in double-skinned façade. Construction and Building Materials, Vol. 21, pp. 556-566.
【E09】McGrattan, K., H.R. Baum, R.G. Rehm (1998). Large eddy simulations of smoke movement. Fire Safety Journal Vol. 30, pp. 161–178
【E10】McGrattan, K. (2008). Fire Dynamics Simulator Version 5 Technical Reference Guide. Washington: U.S. Government Printing Office.
【E11】Petterson, N. M. (2002). Assessing the Feasibility of Reducing the Grid Resolution in FDS Field Modeling. New Zealand: University of Canterbury.
【E12】Smardz, P. (2006). Validation of Fire Dynamics Simulator (FDS) for forced and natural convection flows ,master degree. University of Ulster.
【E13】Baum, H. R. et al (1997). Three Dimensional Simulations of Fire Plume Dynamics. Fire Safety Science-proceedings of the fifth international symposium, (pp. 511-522). Melbourne,Australia.
【E14】Cheung, A. L., Lee, E. W. M., Yuen, R. K. K., Yeoh, G. H. and Cheung, S. C. P. (2008). Capturing the Pulsation Frequency of a Buoyant Pool Fire Using the Large Eddy Simulation Approach. Numerical Heat Transfer, Part A: Applications Vol. 53, pp. 561-576.
【E15】Wen, J. X., Kang, K., Donchev, T. and Karwatzki, J. M. (2007). Validation of FDS for the Prediction of Medium-Scale Pool Fires. Fire Safety Journal Vol. 42, pp. 127-138.
【E16】Zou G.W., Chow W.K. (2005). Evaluation of the field model, Fire Dynamics Simulator, for a specific experimental scenario. Fire Protection Engineering vol. 15, pp. 77-92.
【E17】Anthony Hamins et al (2005). Experiments and Modeling of Multiple Workstations Burning in a Compartment. NIST NCSTAR 1-5E.
【E18】Henk Kaarle Versteeg, Weeratunge Malalasekera,. (2007). An introduction to computational fluid dynamics. UK: Pearson Education Ltd.
【E19】Commission, U. N. (2007). Verification and validation of selected fire models for Nuclear power plant applications, Vol 7, Sec 5-1.
【E20】Morgan, H. P. (1979). Heat transfer from a buoyant smoke layer beneath a ceiling to a sprinkler spray. Fire and Materials, pp. pp.27-33.
校內:2018-01-30公開