| 研究生: |
陳逸桓 Chen, Yi-Huan |
|---|---|
| 論文名稱: |
鍶添加對射頻磁控濺鍍銅酸鑭薄膜晶體結構和導電性質之研究 The crystal structure and electrical conductivity property of Sr-doped LaCuO3 thin film by RF magnetron sputtering |
| 指導教授: |
方冠榮
Fung, Kuan-Zong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 射頻磁控濺鍍 、鍶添加銅酸鑭 |
| 外文關鍵詞: | RF magnetron sputtering, LSCu |
| 相關次數: | 點閱:47 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦結構之鍶添加銅酸鑭(La1−xSrxCuO2.5−δ , LSCu)因為其具有高的導電率和大量的氧空缺,所以被當作固態氧化物燃料電池之陰極來研究。由於鈣鈦礦之鍶添加銅酸鑭結構的穩定性跟在材料中的銅離子價數有關;在薄膜沉積時,控制材料的化學成分和氧壓以及後續薄膜之熱處理是很重要的。在鍶添加銅酸鑭薄膜的製備,討論靶材材料的成分,和熱處理過程對薄膜的影響。另外,陰極反應行為藉由電流中斷法和交流阻抗來分析,並探討陰極之反應行為。
當鍶添加銅酸鑭薄膜經由後續在空氣中500 oC之熱處理,會形成鈣鈦礦結構之鍶添加銅酸鑭。當熱處理溫度高達800 oC時,有第二相的產生,造成LSCu薄膜的導電率隨著熱處理溫度由500oC上升到800oC而從131 S/cm下降到10 S/cm。而陰極過電壓和量測離子導電率之裝置可知氧離子可經由緻密LSCu薄膜內部的氧空缺移動,由此可知LSCu材料確實具有氧空缺可傳導氧離子,為一混合電子離子(MEIC)導體。在800℃下,LSCu氧離子的導電率約為0.02 S/cm。
由阻抗分析圖中,可以得到(1)吸附在電極(LSCu)表面的氧原子轉變成氧離子時的電荷轉移所造成的極化電阻(Rct)值隨著溫度由400℃增加到550℃增加而由95 Ω減少到53 Ω。 (2)LSCu薄膜之氧離子擴散電阻(Rd)隨著溫度由400℃增加到550℃而由112 Ω減 少為46 Ω。且在相同溫度下,緻密LSCu薄膜之氧離子擴散電阻隨著厚度 增加而上升。(3)吸附在電極(LSCu)表面的氧原子轉變成氧離子時的電荷轉移極化電阻為速率決定步驟。
La1−xSrxCuO2.5−δ (LSCu) with perovskite-based structure have been investigated as potential cathode materials for the solid oxide fuel cells (SOFCs) because of their high electrical conductivity and high oxygen vacancy concentration. Due to the structural stability of LSCu is greatly affected by the valence state of cupper ions in the material, the control of chemical composition, and the oxygen partial pressure during deposition and heat-treatment plays an important role on the synthesis of LSCu film. And the cathodic reaction behaviors were analyzed by current interrupt method and ac-impedance method.
The single tetragonal perovskite phase was obtained when the sample was heat-treatment at more than 500oC in air for 1 hour. However, the second phase was formed when the sample was heat-treated at 800oC. The electrical conductivity of LSCu film was decreased from 131 S/cm to 10 S/cm when the specimen was heat-treated in range from 500oC to 800 oC. The oxygen ion diffused in the vacancies of dense LSCu film by cathodic polarization and ion conductivity measurement. By this way, we can know that the material of LSCu is a mixed electronic and ionic conductor. The ion conductivity of LSCu was 0.02 S/cm at 800℃.
By ac-impedance spectra, (1) The charge transfer resistance of LSCu film decreased from 95 Ω to 53 Ω when testing temperature increased 400℃ to 550℃. (2) The oxygen ion diffusion resistance of LSCu film decreased from 112 Ω to 46 Ω when temperature increased from 400℃ to 550℃. And at the same testing temperature, the oxygen ion diffusion resistance of LSCu film increased by increasing the LSCu film thickness. (3) The charge transfer resistance of LSCu film is the rate-limited step.
[1] 衣寶廉著,五南圖書出版公司, Fuel Cell, November of 2000. p21.
[2] S.C. Singhal, MRS Bulletin March (2000).
[3] T. Setoguchi, M. Sawano, K. Eguchi and H. Arai, Solid States Ionics, 40-41, (1990) p502.
[4] T. Hibino, A. Hsahimoto, K. Asano, M. Yano, M. Suzuki and M. Sano, Electromchem. Solid State Lett, 5, (2002) A242.
[5] V. E. J. van Dieten and J. Schoonman, Solid States Ionics, 57, (1992), p141.
[6] H. C. Yu, K. Z. Fung, Materials Research Bulletin, 38, (2003) p231.
[7] H. C. Yu, K. Z. Fung, Journal of Power Sources, 133, (2004) p162.
[8] W. R. Grove, Philos. Mag, 14, (1839) p127.
[9] K. Kordesch and G. Simader, Fuel cells and their applications, pp51-166.
[10]N. Q. Minh, J. Am. Ceram. Soc, 76, (1993) p563.
[11] S. P. Simmer, J. F. Bonnett, N. L.Canfield, K. D. Meinhardt, J. P. Shelton, V. L. Sprenkle and J. W. Stevenson, Journal of Power Sources, 113, (2003), p1.
[12] O. Yamamoto, Y. Takeda, R. Kanno and M. Noda, Solid States Ionics, 22, (1988), p241.
[13] B. C. H. Steele, Solid States Ionics, 86-88, (1996), p1223.
[14] A. O. Isenberg, Proceeding of the High Temperature Solid Oxide Electrolytes Conference, (1983), p5.
[15] D. H. Archer, J. J. Alles, W. A. English, L. Elikan, E. F. Sverdrup, R. L. Zahradnik, Westinghouse Solid Electrolyte Fuel Cell, Fuel Cell Systems, pp 332-342.
[16] J. B. Goodenough, Solid State Ionics, 94, (1997), p17.
[17] J. B. Goodenough, Nature, 404, (2000), p821.
[18] T. Kenjo, and Y. Yamakoshi, Bull. Chem. Soc. Jpn, 65, (1992) p995.
[19] T. Tsai and S. A. Barnett, Solid State Ionics, 93, (1997), p207.
[20]Kim Kinoshta, “Electrochemical Oxygen techenology”, John Wiley& Sons, New York, 1992.
[21] J. A. Lane and B. C. H. Steele, J.Electrochem.Soc, 143, (1996) p3554.
[22] Y. Takeda, R. Kanno. M. Noda and O. Yamamoto, J. Electrochem. Soc, 11, (1987) p2656
[23] M. Godickemeier, K. Sasaki, L. J. Gauckler, I. Riess, Solid State Ionics, 86-88, (1996) p691.
[24] I. Riess, Solid State Ionics, 157, (2003) p1.
[25] J. Fleig, J. Maier, Journal of European Ceramic Society, 24, (2004) p1343.
[26] K.K. Schueqraf, Handbook of Thin Film Deposition Process and Techniques, Noyes Publications, 1998.
[27] M. Ohring, “The Materials Science of Thin Films”, Academic Press, 1992.
[28] “Thin Films”, American Society for Metals, (1963), p.10-12.
[29] P.J. Kelly and R.D. Arnell, Vacuum, (2000), p.159-172.
[30] G.K. Hubler and J.A. Sprague, Surface and Coatings Technology, 81, (1996), pp29-35.
[31] 林棋瑋,張加強,劉品均,“電漿技術於半導體製程之應用與發展”,工業材料,(2003),pp.56~64.
[32] G.O Zhang, Y.J. Ge, W.J. Yang and Z.F. Zhao, , Thin Solid Films, 80, (2001), p243.
[33] 莊達人,VLSI製造技術,(1999),pp146-157.
[34] K.H. Muller, J. Appl. Phys, 62, n5, (1987), p1796.
[35] J.A. Thornton, J. Vac. Sci. Technol, 11, no.4, (1974), p666.
[36] L. Eckertova and T. Ruzicka, International Summer School, June (1991), p220.
[37] N.Imanishi, T. Matsumura, Y. Sumiya, K. Yoshimura, A. Hirano, Y. Takeda, D. Mori, R. kanno, Solid State Ionics, 174, (2004) p245
[38] T. horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, E. I. Tiffee, Electrochimica Acta, 46, (2001) p1837.
[39] A. Endo, H. Fukunaga, C. Wen, K. Yamada, Solid State Ionics, 135, (2000) p353
[40] Stuart B. Adler, Chem. Rev. 104, (2004) p4791.
[41] Y. K. Lee, J. Y. Kim, Y. K. Lee, I. K. Hee-Soo Moon, J.W. Park, C. P. Jacobson, S. J. Visco, Journal of Power Sources, 115, (2003) p219.
[42] R. Peng, C. Xia, X. Liu, D. Peng, G. Meng, Solid State Ionics, 152-153, (2002) p561.
[43] Y. J. Leng, S. H. Chan, S. P. Jiang, K. A. Khor, Solid State Ionics, 170, (2004) p15.
[44] Selmar de Souza, Steven J. Visco, Lutgard C. De Jonghe, Solid State Ionics, 98, (1997) p57.
校內:2104-09-02公開