| 研究生: |
林承毅 Lin, Cheng-Yi |
|---|---|
| 論文名稱: |
以水/醇可溶性之聚乙烯醇為電子注入層製備高效率高分子發光二極體 Fabrication of Highly Efficient PLEDs Using Water/Alcohol-Soluble Poly(vinyl alcohol) as Electron-Injection Layer |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 高分子發光二極體 、電子注入層 、濕式製程 、聚乙烯醇 |
| 外文關鍵詞: | PLEDs, electron injection layer, solution process, poly(vinyl alcohol) (PVA). |
| 相關次數: | 點閱:99 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高分子發光二極體(Polymer Light-Emitting Diode, PLED)的發光方式是藉由從陰、陽極分別注入電子與電洞,並在發光層中再結合,進而發出不同的光色,因此電荷的注入能力與傳輸速率的平衡是影響元件發光效率最重要的因素。然而,在大部分的有機共軛材料中電洞通常較電子有更好的注入及傳輸能力,因此提升電子的注入、傳輸能力將是增進PLED元件效率最有效的方法之一。許多研究利用低功函數金屬作為陰極以提升電子注入能力,但其在大氣中穩定性差,又須以真空蒸鍍的方式製備,成本較高且蒸鍍條件不易控制,故可利用濕式製程成膜的有機電子注入材料近來備受重用。
本研究使用商業化的聚乙烯醇(PVA: 水解程度為78 %)作為電子注入材料,並導入鹼金屬弱酸鹽類來提升PLED元件的效率。 PVA高極性的羫基側鏈能與鹼金屬陽離子作用,幫助鹼金屬鹽類利用濕式製程成膜,增進電子自陰極注入,使發光層內的載子數量更加平衡,大幅增進元件效能。而其特殊的溶解特性更可利用濕式製程(Spin-Coating)在發光層上塗佈成膜,降低製作成本。由於電子注入層具有顯著的效果,因此元件只需以水、氧穩定性高的高功函數金屬鋁(Al)作為電極,即可達到高效率高分子發光二極體之目的。本研究選用之共軛發光材料為Super Yellow (SY),從能階上可看出PVA與之搭配後,將具有電子注入與電洞阻隔之效果。單純以PVA作電子注入層,最大亮度由395 cd/m2提升至5518 cd/m2,起始電壓由5.3 V下降至3.2 V;最大電流效率由0.06 cd/A增加至2.64 cd/A,提升44倍;而最大功率效率則由0.02 lm/W提升至1.41 lm/W,提升至少70倍。加入鹼金屬鹽類後,以30 wt%碳酸鈉(Na2CO3)的元件效果最佳,最大亮度由未添加電子注入層的395 cd/m2提升至20563 cd/m2,起始電壓由5.3 V下降至2.6 V;最大電流效率由0.06 cd/A增加至6.83 cd/A,提升114倍;而最大功率效率則由0.02 lm/W提升至3.66 lm/W,整整提升183倍。整體元件效率、最大亮度均有明顯增加,而起始操作電壓也明顯下降,達到高效率高分子發光二極體之目的。元件效率提升之原因推測是因電子注入層與陰極具有高接觸表面積,因此提升電子注入及電洞阻隔能力,本研究以原子力顯微鏡、Hole-only元件、Electron-only元件及光電測量來證明各種使元件效率提升之假設。
A balanced charges injection of devices is very important to increase the efficiency of the polymer light emitting diodes (PLEDs). Some non-conjugated polymers such as poly(ethylene oxide) (PEO) and ploy(ethylene glycol) dimethyl ether (PEGDE) have been used as potential electron injection layer (EIL) to overcome the problem of lower electron mobility in the organic materials. However, a complicated and costly facility was required to fabricate these kind of electron injection materials by thermal evaporation. In this study, we have successfully used water/alcohol soluble poly(vinyl alcohol) (PVA) as an efficient EIL and it is applicable in fabricating multilayer PLEDs by low-cost wet processes such as spin-coating. With PVA (0.9 mg/ml) as EIL, device achieved higher maximum brightness (5518 cd/m2) and current efficiency (2.64 cd/A) than the device without EIL (395 cd/m2, 0.06 cd/A) due to the enhanced electron injection ability and hole blocking ability of PVA. Additionally, PVA acted as a binder with alkali metal salts to fabricate a thin film on the top of emitting layer by spin-coating and the performance of devices with PVA+alkali metal salts (30 wt%) as EIL were all improved compared with the device with pure PVA as EIL because of the promoted electron injection ability. Especially, the device with PVA+Na2CO3 as EIL achieved highest current efficiency (6.83 cd/A) and luminous power efficiency (3.66 lm/W), which has 114 and 183 times increased than the device without EIL (0.06 cd/A, 0.02 lm/W). These results shows that using PVA as EIL is a promosing strategy for applications of solution-processed mutilayer PLEDs.
[1] M. Pope, P. Magnante, and H. P. Kallmann, "Electroluminescence in Organic Crystals", Journal of Chemical Physics, 38, 2042-&, 1963.
[2] C. W. Tang and S. A. Vanslyke, "Organic Electroluminescent Diodes", Applied Physics Letters, 51, 913-915, 1987.
[3] 段啟聖, 化工資訊雜誌與商情, 26, 40, 民國94年.
[4] 郭昭輝, 塑膠資訊雜誌, 民國91年.
[5] 呂淮安, "以水/醇可溶性之含氮冠醚基芴衍生物為電子注入層製備高效率高分子發光二極體," 碩士論文, 國立成功大學, 2012.
[6] D. A. Skoog, F. J. Holler, and S. R. Crouch, "Principles of Instrumental Analysis. 6th edition, 2007.
[7] J. R. Lakowicz, "Principles of Fluorescence Spectroscopy. 3rd edition, 2006.
[8] S. Pawlizak, Introduction of Fluorescence Microscopy,
[9] V. May and O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems. 2nd revised and enlarged edition, 2004.
[10] Z. H. Kafafi, Organic Electroluminescence, 2005.
[11] L. T. Corporation, Fluorescence Resonance Energy Transfer (FRET)-Note 1.2,
[12] V. Tran and B. J. Schwartz, "Role of nonpolar forces in aqueous solvation: Computer simulation study of solvation dynamics in water following changes in solute size, shape, and charge", Journal of Physical Chemistry B, 103, 5570-5580, 1999.
[13] L. Akcelrud, "Electroluminescent polymers", Progress in Polymer Science, 28, 875-962, 2003.
[14] J. Guillet, Polymer Photophysics and Photochemistry, 1985.
[15] 陳信宏, 陳雲, 中工高雄會刊, 第3期, 72, 2006.
[16] 黃孝文, 陳雲, 化工資訊月刊, 第15卷第3期, 8, 2001.
[17] 葉昆明, 陳雲, 科學發展, 第385期, 58, 2005.
[18] K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, "Highly efficient organic devices based on electrically doped transport layers", Chem Rev, 107, 1233-1271, 2007.
[19] M. A. Baldo, M. E. Thompson, and S. R. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer", Nature, 403, 750-753, 2000.
[20] 楊素華, 光訊雜誌, 第98期, 29, 2002.
[21] 陳金鑫, 黃孝文, 有機電激發光材料與元件, 2005.
[22] Y. Shirota and H. Kageyama, "Charge carrier transporting molecular materials and their applications in devices", Chem Rev, 107, 953-1010, 2007.
[23] 方思文, "含Carbazole芴衍生物的合成、鑑定與電致發光元件電洞傳輸層之應用," 碩士論文, 國立成功大學, 2012.
[24] J. L. Segura, "The chemistry of electroluminescent organic materials", Acta Polymerica, 49, 319-344, 1998.
[25] Y. Yang and A. J. Heeger, "Nature, 374, 539, 1990.
[26] H. A. M. v. Mullekom, J. A. J. M. Vekemans, E. E. Havinga, and E. W. Meijer, "Materials Science and Engineering B-Solid State Materials for Advanced Technology, 32, 1, 2001.
[27] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, "Flexible Light-Emitting-Diodes Made from Soluble Conducting Polymers", Nature, 357, 477-479, 1992.
[28] A. J. Heeger, "Semiconducting and metallic polymers: The fourth generation of polymeric materials", Journal of Physical Chemistry B, 105, 8475-8491, 2001.
[29] R. G. Kepler, "Charge Carrier Production and Mobility in Anthracene Crystals", Physical Review, 119, 1226-1229, 1960.
[30] E. H. Martin and J. Hirsch, "Determination of Carrier Mobility in Plastics by a Time-of-Flight Method", Solid State Communications, 7, 783-&, 1969.
[31] G. Horowitz, "Organic field-effect transistors", Adv Mater, 10, 365-377, 1998.
[32] A. Babel and S. A. Jenekhe, "High electron mobility in ladder polymer field-effect transistors", J Am Chem Soc, 125, 13656-13657, 2003.
[33] X. J. Zhang and S. A. Jenekhe, "Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions", Macromolecules, 33, 2069-2082, 2000.
[34] S. A. Jenekhe and S. J. Yi, "Efficient photovoltaic cells from semiconducting polymer heterojunctions", Applied Physics Letters, 77, 2635-2637, 2000.
[35] G. G. Malliaras and J. C. Scott, "The roles of injection and mobility in organic light emitting diodes", Journal of Applied Physics, 83, 5399-5403, 1998.
[36] M. V. M. Rao, T. S. Huang, Y. K. Su, M. L. Tu, C. Y. Huang, and S. S. Wu, "Polymer light-emitting devices using poly(ethylene oxide) as an electron injecting layer", Nano-Micro Letters, 2, 49-52, 2010.
[37] M. L. Tu, Y. K. Su, S. S. Wu, T. F. Guo, T. C. Wen, and C. Y. Huang, "Violet electroluminescence from poly(N-vinylcarbazole)/ZnO-nanrod composite polymer light-emitting devices", Synthetic Metals, 161, 450-454, 2011.
[38] T. H. Lee, J. C. A. Huang, G. L. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, and Y. J. Hsu, "Organic-Oxide Cathode Buffer Layer in Fabricating High-Performance Polymer Light-Emitting Diodes", Advanced Functional Materials, 18, 3036-3042, 2008.
[39] T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu, and C. T. Chung, "Organic oxide/Al composite cathode in efficient polymer light-emitting diodes", Applied Physics Letters, 88, 113501, 2006.
[40] C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu, and Y. Yang, "Effective connecting architecture for tandem organic light-emitting devices", Applied Physics Letters, 87, 241121, 2005.
[41] C.-I. Wu, C.-T. Lin, Y.-H. Chen, M.-H. Chen, Y.-J. Lu, and C.-C. Wu, "Electronic structures and electron-injection mechanisms of cesium-carbonateincorporated
cathode structures for organic light-emitting devices", Applied Physics Letters, 88, 152104, 2006.
[42] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, "Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers (vol 409, pg 494, 2001)", Nature, 411, 617-617, 2001.
[43] C. Ganzorig, K. Suga, and M. Fujihira, "Alkali metal acetates as effective electron injection layers for organic electroluminescent devices", Materials Science and Engineering B-Solid State Materials for Advanced Technology, 85, 140-143, 2001.
[44] C. Ganzorig and M. Fujihira, "Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition", Applied Physics Letters, 85, 4774-4776, 2004.
[45] M. Stossel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, and A. Winnacker, "Space-charge-limited electron currents in 8-hydroxyquinoline aluminum", Applied Physics Letters, 76, 115-117, 2000.
[46] M. W. Lin, T. C. Wen, Y. J. Hsu, and T. F. Guo, Journal of Materials Cemistry, 21, 18840, 2011.
[47] W. D. Xu, W. Y. Lai, Q. Hu, X. Y. Teng, X. W. Zhang, and W. Huang, "A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics", Polymer Chemistry, 5, 2942-2950, 2014.
[48] Z. Kai, L. ShengJian, G. Xing, D. ChunHui, Z. Jie, Z. ChengMei, W. Lei, H. Fei, and C. Yong, "Alkali metal salts doped pluronic block polymers as electron injection/transport layers for high performance polymer light-emitting diodes ", SCIENCE CHINA Chemistry, 55, 766-771, 2012.
[49] L. J. Rozanski, E. Castaldelli, F. L. M. Sam, C. A. Mills, G. J. F. Demets, and S. R. P. Silva, "Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes", Journal of Materials Chemistry C, 1, 3347-3352, 2013.
[50] T. Earmme and S. A. Jenekhe, "High-performance multilayered phosphorescent OLEDs by solution-processed commercial electron-transport materials", Journal of Materials Chemistry, 20, 4660-4668, 2012.