| 研究生: |
戴崇禮 Tai, Chung-Li |
|---|---|
| 論文名稱: |
動態模糊邏輯及模糊均值線分類演算法於道路偵測之研究 Road Detection Using Dynamic Fuzzy Logic and Fuzzy c-Means Line-Clustering |
| 指導教授: |
陳介力
Chen, Chieh-Li |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | RGB比值 、動態模糊邏輯 、模糊均值分類法 、影像轉聲音 |
| 外文關鍵詞: | RGB ratio, Dynamic fuzzy logic, Fuzzy c-means, Image-to-MIDI |
| 相關次數: | 點閱:74 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出了一個以RGB 比值空間來表示色彩成分,即以RGB三成份對於參考顏色的比值來表示整張影像,不僅可消除亮度變化所造成的影響,更因保存了三色彩成分的資訊,對於彩度的表示,相較於HSI空間而言,保留了更完整的資訊。本文利用RGB比值之線性關係對於道路色彩模型進行建模,並以一橢圓形區域作為道路色彩模型的範圍,而決策系統則使用動態模糊邏輯,本文提出動態歸屬度函數範圍,使其在判定色彩相似度時,隨著所對應亮度的不同,而動態改變歸屬度函數範圍,讓決策系統具有更好的強健性與適應性。透過與現有方法的比較可顯現本文所提出之色彩分割方法能有效降低誤判率以及更能消除陰影及亮度變化所造成的影響。
本文更將模糊c均值分類演算法加以改良,使其應用於所提出之RGB比值色彩空間,除了將一般群聚的中心點以中心線代替外,更不需事先知道所需分類的群聚數目,利用此改良之分類法,針對道路偵測的應用上,成功克服因為陰影及反光所造成之偵測失誤。利用道路偵測所得之結果,透過Image-to-MIDI的資訊轉換,將其應用於盲人導行系統。其中物件遠近轉換為音量的大小,不同物件即以不同樂器表示,而物件的左右則以播放的順序來表示,由左至右播放。實驗結果顯示,本文所提出之轉換法則能有效的告知使用者障礙物的大小、方位及遠近,而本系統在計算時間的花費上,平均約200毫秒,約為5Hz,已達到一般行車導航的即時應用水準。
In this study, the RGB color ratio space is proposed and defined according to a reference color Different to traditional distance measurement, a road color model is determined by an ellipse area in the RGB ratio space enclosed by the estimated boundaries. A proposed dynamic fuzzy logic, which fuzzy membership functions are defined according to estimated boundaries, is introduced to implement clustering rules. Therefore, each pixel will have its own fuzzy membership function corresponding to its intensity. Fuzzy c-means line-clustering which integrate linear regression into fuzzy c-means method is introduced and applied on the RGB ratio space to overcome shadow and reflection problems. Comparing with the JSEG method, the proposed method is invariant to intensity variation and higher performance is achieved. To develop an image guidance system for visually impaired people, Image-to-MIDI mapping is introduced to transform image information into sound patterns. Experimental results show that the proposed method can be adapted to various road types and the resulting audio information successfully indicates obstacle position and size. As a result, the proposed approach is a great benefit to the study of road detection and image guidance systems.
Acharya, T., and Ray, A. K., 2005, Image Processing: Principles and Applications, Wiley-Interscience, New Jersey, USA.
Al Aghbari, Z., and Al-Haj, R., 2006, “Hill-Manipulation: An Effective Algorithm for Color Image Segmentation,” Image Vis. Comput., 24(8), pp. 894–903.
Aufrere, R., Chapuis, R., and Chausse, F., 2001, “A Model-Driven Approach for Real-Time Road Recognition,” Mach. Vis. Appl., 13(2), pp. 95–107.
Bach-y-Rita, P., 1972, “Brain Mechanisms in Sensory Substitution,” San Diego CA: Academic.
Barnard, K. and Finlayson, G., 2000, “Shadow Identification Using Color Ratios,” Proc. the IS&T/SID 8th Color Imaging Conference: Color Science and Engineering, Systems, Technologies and Applications, Springfield, pp. 97–101.
Bascle, B., Bernier, O., and Lemaire, V., 2007, “Learning Invariants to Illumination Changes Typical of Indoor Environments: Application to Image Color Correction,” Int. J. Imaging Syst. Technol., 17(3), pp. 132–142.
Benedek, C., and Sziranyi, T., 2007, “Study on Color Space Selection for Detecting Cast Shadows in Video Surveillance,” Int. J. Imaging Syst. Technol., 17(3), pp. 190–201.
Bezdek, J. C., 1981, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, USA.
Bishop, C. M., 2006, Pattern Recognition and Machine Learning, Springer, New York, USA.
Bliss, J. C., 1969, “A Relative High Resolution Reading Aid for the Blind,” IEEE Trans. Man-Machine Syst., MMS-10, pp. 1–9.
Bosch, A., Munoz, X., and Freixenet, J., 2007, “Segmentation and Description of Natural Outdoor Scenes,” Image Vis. Comput., 25(5), pp. 727–740.
Campadelli, P., Medici, D., and Schettini, R., 1997, “Color Image Segmentation Using Hopfield Networks,” Image Vis. Comput., 15(3), pp. 161–166.
Capelle, C., Trullemans, C., Arno, P., and Veraart, C., 1998, “A Real-Time Experimental Prototype for Enhancement of Vision Rehabilitation Using Auditory Substitution,” IEEE Trans. Biomed. Eng., 45(10), pp. 1279–1293.
Chen, C. L., Tai, C. L., and Lio, Y. F., 2007, “Virtual Binocular Vision Systems to Solid Model Reconstruction,” Int. J. Adv. Manuf. Technol., 35(3-4), pp. 379–384.
Chen, Y. S., Chen, B. T., and Hsu, W. H., 2005, “Efficient Fuzzy c-Means Clustering for Image Data,” J. Electron. Imaging, 14(1), 013017.
Cheng, H. Y., Jeng, B. S., Tseng, P. T., and Fan, K. C., 2006, “Lane Detection with Moving Vehicles in The Traffic Scenes,” IEEE Trans. Intell. Transp. Syst., 7(4), pp. 571–582.
Dao, N. X., You, B. J., and Oh, S. R., 2005, “Visual Navigation for Indoor Mobile Robots Using A Single Camera,” Proc. IEEE International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, pp. 1992–1997.
Deng, Y., and Manjunath, B. S., 2001, “Unsupervised Segmentation of Color-Texture Regions in Images and Video,” IEEE Trans. Pattern Anal. Mach. Intell., 23(8), pp. 800–810.
Do, H. C., You, J. Y., and Chien, S. I., 2007, “Skin Color Detection through Estimation and Conversion of Illuminant Color under Various Illuminations,” IEEE Trans. Consum. Electron., 53(3), pp. 1103–1108.
Dunn., J. C., 1973, “A Fuzzy Relative of The ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters,” Journal of Cybernetics, 3, pp. 32–57.
Ebner, M., 2007, Color Constancy, John Wiley & Sons, West Sussex, UK.
Finlayson, G., Hordley, S., and Drew, M., 2002, “Removing Shadows from Images Using Retinex,” Proc. 10th Imaging Conference, pp. 73–79.
Finlayson, G., Hordley, S., Schaefer, G., and Yun-Tian, G., 2005, “Illuminant and Device Invariant Colour Using Histogram Equalization,” Pattern Recognit., 38(2), pp. 179–190.
Freeman, J. A., and Skapura, D. M., 1991, Neural Networks: Algorithms, Applications, and Programming Techniques, Addison-Wesley, New York, USA.
Gonzalez, R. C., and Woods, R. E., 2001, Digital Image Processing, 2nd edition, Prentice-Hall, New Jersey, USA.
Harris, J., 2006, Fuzzy Logic Applications in Engineering Science, Springer-Verlag, Dordrecht, Netherlands.
Hartley, R., and Zisserman, A., 2004, Multiple View Geometry in Computer Vision, 2nd edition, Cambridge University Press, Cambridge, UK.
Hattori, H., 2000, “Stereo for 2D Visual Navigation,” Proc. IEEE Intelligent Vehicles Symposium, Dearborn, MI, USA, pp. 31–38.
He, Y., Luo, Y. P., and Hu, D. C., 2007, “Automatic Seeded Region Growing Based on Gradient Vector Flow for Color Image Segmentation,” Opt. Eng., 46(4), pp. 047003.
He, Y. H., Wang, H., and Zang, B., 2004, “Color-Based Road Detection in Urban Traffic Scenes,” IEEE Trans. Intell. Transp. Syst., 5(4), pp. 309–318.
Jiang, Y., and Zhou, Z. H., 2004, “SOM Ensemble-Based Image Segmentation,” Neural Process. Lett., 20(3), pp. 171–178.
Jung, C. R., and Kelber, C. R., 2005, “Lane Following and Lane Departure Using A Linear-Parabolic Model,” Image Vis. Comput., 23(13), pp. 1192–1202.
Kato, Z., 2008, “Segmentation of Color Images via Reversible Jump MCMC Sampling,” Image Vis. Comput., 26(3), pp. 361–371.
Kay, L., 1974, “A Sonar Aid to Enhance Spatial Perception of the Blind: Engineering, Design and Evaluation,” Radio Electron. Engineer, 44, pp. 605–627.
Kim, C., You, B. J., Jeong, M. H., and Kim, H., 2008, “Color Segmentation Robust to Brightness Variations by Using B-spline Curve Modeling,” Pattern Recognit., 41(1), pp. 22–37.
Kim, H. S., Sakamoto, R., Kitahara, I., and Toriyama, T., 2007, “Robust Foreground Extraction Technique Using Background Subtraction with Multiple Thresholds,” Opt. Eng., 46(9), pp. 097004.
Klir, G. J., and Yuan, B., 2003, Fuzzy Sets and Fuzzy Logic : Theory and Applications, Prentice Hall, Taipei, Taiwan.
Kuo, C. F. J., Shih, C. Y., and Lee, J. Y., 2008, “Separating Color and Identifying Repeat Pattern through The Automatic Computerized Analysis System for Printed Fabrics,” J. Inf. Sci. Eng., 24(2), pp. 453–467.
Kutami, A., Maruya, Y., Takahashi, H., and Okuno, A., 1990, “Visual Navigation of Autonomous On-Road Vehicle,” Proc. IEEE IROS, Kokubunji, Tokyo, Japan, pp. 175–180.
Lai, A. H. S., and Yung, N. H. C., 2000, “Lane Detection by Orientation and Length Discrimination,” IEEE Trans. Syst. Man Cybern. Part B-Cybern., 30(4), pp. 539–548.
Lee, J. W., 2002, “A Machine Vision System for Lane-Departure Detection,” Comput. Vis. Image Underst., 86(1), pp. 52–78.
Lin, C., 2007, “Face Detection in Complicated Backgrounds and Different Illumination Conditions by Using YCbCr Color Space and Neural Network,” Pattern Recognit. Lett., 28(16), pp. 2190–2200.
Li, Q., Zheng, N. N., and Cheng, H., 2004, “Springrobot: A Prototype Autonomous Vehicle and Its Algorithms for Lane Detection,” IEEE Trans. Intell. Transp. Syst., 5(4), pp. 300–308.
Lloyd, S. P., 1982, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory, 28(2), pp. 129–137.
Loomis, J. M., Golledge, R. G., and Klatzky, R. L., 1998, “Navigation System for the Blind: Auditory Display Modes and Guidance,” Presence-Teleoper. Virtual Env., 7 (2), pp. 193–203.
Luis-Garcia, R. D., Deriche, R., and Alberola-Lopez, C., 2008, “Texture and Color Segmentation Based on The Combined Use of The Structure Tensor and The Image Components,” Signal Process., 88(4), pp. 776–795.
MacQueen, J. B., 1967, “Some Methods for Classification and Analysis of Multivariate Observations,” Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, pp. 281–297.
Meijer, P. B. L., 1992, “An Experimental System for Auditory Image Representations,” IEEE Trans. Biomed. Eng., 39(2), pp. 112–121.
Melo, J., Naftel, A., Bernardino, A., and Santos-Victor, J., 2006, “Detection and Classification of Highway Lanes Using Vehicle Motion Trajectories,” IEEE Trans. Intell. Transp. Syst., 7(2), pp. 188–200.
Messick, P., 1998, Maximum MIDI: Music Applications in C++, Manning Publications, Greenwich, UK.
Mikic, I., Cosman, P. C., Kogut, G. T., and Trivedi, M. M., 2000, “Moving Shadow and Object Detection in Traffic Scenes,” Proc. the 15th international conference on pattern recognition, Barcelona, Spain, pp. 321–324.
Murshrif, M. M., and Ray, A. K., 2008, “Color Image Segmentation: Rough-Set Theoretic Approach,” Pattern Recognit. Lett., 29(4), pp. 483–493.
Nagarajan, R., Sainarayanan, G., Yaacob, S., and Porle, R. R., 2005, “Fuzzy-Rule-Based Object Identification Methodology for NAVI System,” EURASIP J. Adv. Signal Process., 2005(14), pp. 2260–2267.
Nye, P. W. (Ed.), 1973, “A Preliminary Evaluation of the Bionic Instruments--Veterans Administration Laser Cane,” National Academy of Sciences Final Report.
Paetzold, F., and Franke, U., 2000, “Road Recognition in Urban Environment,” Image Vis. Comput., 18(5), pp. 377–387.
Papamarkos, N., Strouthopoulos, C., and Andreadis, I., 2000, “Multithresholding of Color and Gray-Level Images through A Neural Network Technique,” Image Vis. Comput., 18(3), pp. 213–222.
Pears, N., and Liang, B., 2001, “Ground Plane Segmentation for Mobile Robot Visual Navigation,” Proc. IEEE International Conference on Intelligent Robots and Systems, Maui, Hawaii, USA, pp. 1513–1518.
Plataniotis, K. N., and Venestsanopoulos, A. N., 2000, Color image processing and applications, Springer, Berlin, Germany.
Qifa, Ke., and Kanade, T., 2000, “Transforming Camera Geometry to A Virtual Downward-Looking Camera: Robust Ego-Motion Estimation and Ground-Layer Detection,” Proc. IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, pp. I-390–I-397.
Rous, M., Lupschen, H., and Kraiss, K. F., 2005, “Vision-Based Indoor Scene Analysis for Natural Landmark Detection,” Proc. IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 4642–4647.
Sainarayanan, G., Nagarajan, R., and Yaacob, S., 2007, “Fuzzy Image Processing Scheme for Autonomous Navigation of Human Blind,” Appl. Soft. Comput., 7(1), pp. 257–264.
Sinclair, D., and Blake, A., 1996, “Quantitative Planar Region Detection,” Int. J. Comput. Vis., 18(1), pp. 77–91.
Sotelo, M. A., Rodriguez, F. J., Magdalena, L., Bergasa, L. M., and Boquete, L. A., 2004, “Color Vision-Based Lane Tracking System for Autonomous Driving on Unmarked Roads,” Auton. Robot., 16(1), pp. 95–116.
Steinhaus, H., 1956, “Sur la division des corps matériels en parties,” Bull. Acad. Polon. Sci. 4(12), pp. 801–804.
Tai, Y. H., Jia, J. Y., and Tang, C. K., 2007, “Soft Color Segmentation and Its Applications,” IEEE Trans. Pattern Anal. Mach. Intell., 29(9), pp. 1520–1537.
Tanaka, K., 1996, An Introduction to Fuzzy Logic for Practical Applications, Springer-Verlag, New York, USA.
Veraart, C., 1989, “Neurophysiological Approach to the Design of Visual Prostheses: A Theoretical Discussion,” J. Med. Eng. Technol., 13, pp. 57–62.
Wang, C. M., and Huang, Y. H., 2006, “A novel Automatic Color Transfer Algorithm Between Images,” J. Chin. Inst. Eng., 29(6), pp. 1051–1060.
Wang, Y., Shen, D. G., and Teoh, E. K., 2000, “Lane Detection Using Spline Model,” Pattern Recognit. Lett., 21(8), pp. 677–689.
Wang, Y., Teoh, E. K., and Shen, D. G., 2004, “Lane Detection and Tracking Using B-Snake,” Image Vis. Comput., 22(4), pp. 269–280.
Wang, Y. G., Yang, J., Zhou, Y., and Wang, Y. Z., 2007, “Region Partition and Feature Matching Based Color Recognition of Tongue Image,” Pattern Recognit. Lett., 28(13), pp. 11–19.
Wangenheim, A. V., Bertoldi, R. F., Abdala, D. D., and Richter, M. M., 2007, “Color Image Segmentation Guided by A Color Gradient Network,” Pattern Recognit. Lett., 28, pp. 1795–1803.
Weng, S. K., Kuo, C. M., and Kang, W. C., 2007, “Color Texture Segmentation Using Color Transform and Feature Distributions,” IEICE Trans. Inf. Syst., E90D, pp. 787–790.
Wijesoma, W. S., Kodagoda, K. R. S., and Balasuriya, A. P., 2004, “Road-Boundary Detection and Tracking Using Ladar Sensing,” IEEE Trans. Robot. Autom., 20(3), pp. 456–464.
World Health Organization (WHO), 1997, Blindness and Visual Disability, Part I of VII: General Information, Fact Sheet 142.
Yates, R. D., and Goodman, D. J., 2005, Probability and Stochastic Processes, 2nd edition, John Wiley & Sons, New Jersey, USA.
Zadeh, L. A., 1965, “Fuzzy sets,” Inf. Control, 8, pp. 338–353.
Zimmermann, H. J., 1991. Fuzzy set theory and its applications, 2nd edition, Kluwer Academic Publishers, Boston, USA.
Zhou, Y., Xu, R., Hu, X. F., and Ye, Q. T., 2006, “A Robust Lane Detection and Tracking Method Based on Computer Vision,” Meas. Sci. Technol., 17(4), pp. 736–745.