簡易檢索 / 詳目顯示

研究生: 陳良哲
Chen, Liang-Che
論文名稱: 增進氧化石墨烯粒子光催化分解水產氫之結構設計
Structural Design for Promoting the Activity of Graphene Oxide Dots in Photocatalytic Hydrogen Generation from Water
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 126
中文關鍵詞: 石墨烯氧化石墨烯粒子氮官能基光觸媒水分解產氫光能轉換
外文關鍵詞: Graphene, Graphene oxide dots, Nitrogen functionality, Photocatalysis, Water decomposition, H2 production, Photo-energy conversion
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由碳、氫、氧元素所組成的石墨烯材料,是具有優異物理與化學特性的半導體,能有效的利用太陽光,可望成為解決能源與環境問題的關鍵材料。石墨烯半導體具有可調控的電子結構。藉由化學修飾法修飾不同官能基能改變能隙大小,使其符合太陽光頻譜,更有效率的使用太陽光。將石墨烯轉變成氧化石墨烯粒子可增加比表面積,其周圍的親水官能基使氧化石墨烯粒子均勻的分散在水中,有效的提升反應效率。綜合以上特性,氧化石墨烯粒子應用在光觸媒產氫將會有相當好的效果。
    本論文分為兩個主題: 1.擔載氮摻雜氧化石墨烯粒子於氧化石墨烯薄膜上形成高穩定性且高效率的光催化分解水產氫觸媒;2.於氧化石墨烯粒子表面設計不同結構的氮官能基來促進光催化產氫效率。
    第一部分,我們將氮參雜氧化石墨烯粒子(Nitrogen-doped graphene oxide dots, NGODs)擔載於氧化石墨烯薄膜(GO sheets)上來製備一種高穩定性且高效率的光觸媒複合物(NGOD:GO composite),在可見光照射下作為分解水產氫的觸媒。雖然NGODs在沉積白金作為共觸媒後具有很高的分解水活性,但是此觸媒穩定度很低,觸媒活性隨時間遞減。利用GO sheets,可以將NGODs照光激發產生的電子傳導至GO sheets,此種垂直的電子轉移現象已經由螢光光譜分析證實,且可將分解水產氫的反應位置由NGODs移至GO sheets,藉此保護NGODs觸媒不受破壞。此外,GO sheets可作為電子儲存槽來加速NGODs上電子與電洞的分離。沉積3wt%白金在NGOD:GO複合物上並使用TEOA作為犧牲試劑,可以穩定分解水產氫達96小時,且在420奈米波長下的量子效率可以達10%。
    在第二部分中,我們探討氮的官能基如何影響光生電子在石墨烯材料的傳遞。利用高溫煆燒法將GO分別放入氬氣與氨氣中進行熱處理,並搭配在硝酸溶液中超音波震盪剝層的方法,分別製備出氧化石墨烯粒子(GODs)與氮參雜的氧化石墨烯粒子(NGODs)。NGODs含有quaternary/pyridinic/pyrrolic三種氮官能基,這三種官能基的氮原子主要鍵結於GO sheet的平面上來修復GO sheet上的缺陷。將NGODs進行高溫氨水水熱處理,製備ammonia-treated NGODs (A-NGODs)。此方法可將NGODs上部分pyridinic/pyrrolic氮官能基轉變成amino/amide的氮官能基。由於amino/amide官能基上的氮原子在GO sheet上並非平面結構,氮原子上的孤對電子易與GO sheet上的π電子形成共振結構。此共振結構會使光生電子由單重態傳導到三重態,增加電子的生存時間。沉積白金在於光觸媒上並使用TEOA作為犧牲試劑,在420奈米波長下的量子效率可達7.3%(GODs)、9.7%(NGODs)、21%(A-NGODs)。此高效率的A-NGODs光觸媒證明了氮官能基在觸媒表面的結構會影響電子的傳遞,進而影響光催化反應。

    Graphene-based materials, consisting of C, H, O, and N elements, are highly potential materials for solving energy and environmental problems by utilizing the clean solar energy. One of the features of graphene is the tunable electronic structure, and the band gap can be tailored by the chemical modification. Converting graphene into graphene oxide dots (GODs) can increase the surface area and the hydrophilic functional groups make GODs well disperse in water. The novel physical chemistry properties make GODs interesting candidates for photo-energy conversion applications in photocatalysis.
    This dissertation includes two parts: 1. Incorporating nitrogen-doped graphene oxide dots with graphene oxide sheets for stable and effective hydrogen production through photocatalytic water decomposition. 2. Architecting nitrogen functionalities on graphene oxide photocatalysts for boosting hydrogen production in water decomposition process.
    In the first part, we incorporate nitrogen-doped graphene oxide dots (NGODs) with graphene oxide (GO) sheets to form a stable and effective NGOD:GO composite for photocatalytic H2 production through water splitting under visible light illumination. Although Pt-deposited NGOD catalysts were active in the photocatalytic H2 production reaction, they were only moderately stable. Introducing GO sheets in light-absorbing NGODs effectively mediated the transfer of photogenerated electrons from the NGODs to the GO sheets. This vectorial electron transfer, confirmed by a photoluminescence spectroscopy analysis, led to the relocation of the reaction sites from the NGODs to the GO sheets, protecting the NGODs from attack by reaction intermediates. Moreover, the GO sheets acted as an electron sink, facilitating charge separation in the NGODs. When 3 wt% Pt was deposited on the developed NGOD:GO catalyst, the catalyst steadily catalyzed H2 production from a 10 vol% aqueous solution of triethanolamine under visible light illumination for 96 h, unlike a NGOD catalyst that exhibited an activity decay of 50% within 96 h. The apparent quantum yield of H2 under 420-nm light irradiation was 10.0%, demonstrating the high activity of the NGOD:GO catalyst.
    In the second part, we elucidate how nitrogen functionalities influence the transition and transfer of photogenerated electrons in graphene-based materials. Graphene oxide dots (GODs) and N-doped GODs (NGODs) are synthesized by thermally treating graphene oxide (GO) sheets in argon and ammonia, respectively, and then ultrasonically exfoliating the sheets in nitric acid. The nitrogen functionalities of NGODs are mainly quaternary/pyridinic/pyrrolic, and the nitrogen atoms in these functionalities are planar to the GO sheets and repair the vacancy defects on the sheets. Hydrothermal treatment of NGODs in ammonia yields ammonia-treated NGODs (A-NGODs), with some pyridinic/pyrrolic groups being converted to amino/amide groups. The nitrogen atoms in the amino/amide groups are not planar to the GO sheets and are prone to donate their lone pair electrons to resonantly conjugate with the aromatic  electrons. The promoted conjugation facilitates the relaxation of photogenerated electrons to the triplet states and prolongs the electron lifetime. When deposited with Pt as the co-catalyst, the samples catalyze H2 production from an aqueous triethanolamine solution under 420-nm monochromatic irradiation at quantum yields of 7.3% (GODs), 9.7% (NGODs), and 21% (A-NGODs). The high activity of A-NGODs demonstrates that architecting nitrogen functionalities effectively mediate charge motion in carbon-based materials for application to photoenergy conversion.

    中文摘要.................................................................................................................................I Abstract...............................................................................................................................III Acknowledgement................................................................................................................V Contents..............................................................................................................................VI List of Figures.....................................................................................................................IX List of Tables...................................................................................................................XVII Chapter 1 Introduction 1 1-1 Overview 1 1-2 Solar Water Splitting 5 1-2-1 Solar Energy 5 1-2-2 System for Solar Water Splitting 7 1-2-3 Phtotcatalyst 10 1-3 Specific Motives and Objectives 14 1-4 References 16 Chapter 2 Literature Review 18 2-1 Semiconductor Electrochemistry and Photoelectrochemistry 18 2-1-1 Definition of Semiconductors 18 2-1-2 Fermi level 20 2-1-3 Semiconductor-electrolyte Interface 22 2-2 Fundamental of Photocatalytic Water Splitting 24 2-2-1 Principle of Photocatalytic Water Splitting 24 2-2-2 Mechanisms in Photocatalytic Water Splitting 25 2-2-3 Evaluations of Photocatalytic Water Splitting 28 2-3 Graphene Oxide-Based Materials for Photocatalysis 31 2-3-1 Electronic Structure Modulation of Graphene 31 2-3-2 Functions of Graphene Sheet in Graphene Nanocomposite 33 2-3-3 Triplet States and Electronic Relaxation in Photoexcited Graphene Oxide-based Material 39 2-3-4 Graphene Oxide Dots as Photocatalysts for Water Splitting 48 2-4 References 52 Chapter 3 56 Incorporating Nitrogen-doped Graphene oxide Dots with Graphene Oxide Sheets for Stable and Effective Hydrogen Production through Photocatalytic Water Decomposition 56 3-1 Introduction 56 3-2 Experimental 58 3-2-1 Synthesis of Photocatalysts 58 3-2-2 Characterization of Photocatalysts 60 3-2-3 Photocatalytic Activity Measurements 60 3-3 Results and Discussion 61 3-3-1 Morphology and Chemical Structure of Photocatalysts 61 3-3-2 Optical and Electronic Properties of Photocatalysts 67 3-3-3 Activity of Photocatalysts during H2 Generation 71 3-4 Conclusions 77 3-5 References 78 Chapter 4 81 Architecting Nitrogen Functionalities on Graphene Oxide Photocatalysts for Boosting Hydrogen Production in Water Decomposition Process 81 4-1 Introduction 81 4-2 Experimental Section 84 4-2-1 Synthesis of Photocatalysts 84 4-2-2 Characterization of Photocatalysts 85 4-2-3 Photocatalytic Activity Measurements 86 4-3 Results and Discussion 87 4-3-1 Morphology and Chemical Structure of Photocatalysts 87 4-3-2 Optical and Electronic Properties of Photocatalysts 98 4-3-3 Activity of Photocatalyts in H2 Generation 108 4-4 Conclusion 116 4-5 References 118 Chapter 5 Overall Conclusions 123 Chapter 6 Curriculum Vitae 125

    Chapter 1
    [1] http://euanmearns.com/global-energy-trends-bp-statistical-review-2015/
    [2] M. Gratzel, Nature 2001, 414, 338.
    [3] J. A. Turner, Science 1999, 285, 687.
    [4] S. A. Sherif, F. Barbir, T. N. Veziroglu, Solar Energy 2005, 78, 647.
    [5] R. Abe, J. Photochem. Photobiol., C Photochem. Rev. 2010, 11, 179.
    [6] A. Fujishima, K. Honda, Nature 1972, 238, 37.
    [7] G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J. R. Gong, Adv. Mater. 2013, 25, 3820.
    [8] X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, J. Mater. Chem. A 2015, 3, 2485.
    [9] S. Linic, P. Christopher, D. B. Ingram, Nat Mater 2011, 10, 911.
    [10] S. C. Warren, E. Thimsen, Energy Environ. Sci. 2012, 5, 5133.
    [11] A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
    [12] S. Ye, R. Wang, M. Z. Wu, Y. P. Yuan, Appl. Surf. Sci. 2015, 358, Part A, 15.
    [13] S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir 2009, 25, 10397.
    [14] F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S. C. Lee, J. Mater. Chem. 2011, 21, 15171.
    [15] Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, I. Chorkendorff, Angew. Chem. Int. Ed. 2013, 52, 3621.
    [16] T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang, H. Teng, Adv. Funct. Mater. 2010, 20, 2255.
    [17] K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Nano Lett. 2009, 9, 1058.
    [18] H. J. Yun, H. Lee, N. D. Kim, D. M. Lee, S. Yu, J. Yi, ACS Nano 2011, 5, 4084.
    [19] A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 1999, 121, 11459.
    [20] H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc. 2003, 125, 3082.
    [21] X. Yan, X. Cui, B. Li, L.-s. Li, Nano Lett. 2010, 10, 1869.
    [22] A. Kudo, A. Tanaka, K. Domen, T. Onishi, J. Catal. 1988, 111, 296.
    [23] T. F. Yeh, F. F. Chan, C. T. Hsieh, H. Teng, J. Phys. Chem. C 2011, 115, 22587.
    [24] T. F. Yeh, S. J. Chen, C. S. Yeh, H. Teng, J. Phys. Chem. C 2013, 117, 6516.
    [25] T. F. Yeh, C. Y. Teng, S. J. Chen, H. Teng, Adv. Mater. 2014, 26, 3297.
    [26] T. F. Yeh, S. J. Chen, H. Teng, Nano Energy 2015, 12, 476.
    [27] L. C. Chen, T. F. Yeh, Y. L. Lee, H. Teng, Appl. Catal., A. 2016, 521, 118.
    [28] Y. Ma, A. S. Foster, A. V. Krasheninnikov, R. M. Nieminen, Phys. Rev. B 2005, 72.
    [29] L. Tang, R. Ji, X. Li, K. S. Teng, S. P. Lau, J. Mater. Chem. C 2013, 1, 4908.
    [30] S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong, S. Jeon, ACS Nano 2013, 7, 1239.
    [31] H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Adv. Mater. 2012, 24, 5333.
    [32] S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, X. Wang, H. Sun, B. Yang, Adv. Funct. Mater. 2012, 22, 4732.
    [33] Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, Z. Zhang, Chem. Comm. 2010, 46, 7319.
    [34] G. S. Kumar, R. Roy, D. Sen, U. K. Ghorai, R. Thapa, N. Mazumder, S. Saha, K. K. Chattopadhyay, Nanoscale 2014, 6, 3384.
    [35] W. Chen, L. Duan, L. Wang, D. Zhu, Environ. Sci. Technol. 2008, 42, 6862.
    [36] Q. Liu, B. Guo, Z. Rao, B. Zhang, J. R. Gong, Nano Lett. 2013, 13, 2436.
    [37] H. Tetsuka, A. Nagoya, R. Asahi, J. Mater. Chem. C 2015, 3, 3536.
    [38] A. Köhler, H. Bässler, Mater. Sci. Eng. R-Rep. 2009, 66, 71.
    [39] E. C. Lim, S. K. Chakrabarti, Chem. Phys. Lett. 1967, 1, 28.
    [40] E. C. Lim, S. K. Chakrabarti, J. Phys. Chem. Phys. 1967, 47, 4726.
    [41] J. E. Adams, W. W. Mantulin, J. R. Huber, J. Am. Chem. Soc. 1973, 95, 5477.

    Chapter 2
    [1] http://en.wikipedia.org/wiki/N-type_semiconductor.
    [2] C. Kittel, H. Kroemer, Thermal Physics (2nd Edition), W. H. Freeman, p. 357.
    [3] B. G. Streetman, S. Banerjee, Solid State Electronic Devices, PEARSON, Chapter 3.
    [4] S. Licht, Semiconductor Electrodes and Photoelectrochemistry, WILEY-VCH, p. 292.
    [5] A. Fujishima, K. Honda, Nature 1972, 238, 37.
    [6] A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
    [7] X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, J. Mater. Chem. A 2015, 3, 2485.
    [8] R. Abe, J. Photochem. Photobiol., C Photochem. Rev. 2010, 11, 179.
    [9] G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J. R. Gong, Adv. Mater. 2013, 25, 3820.
    [10] A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 2002, 124, 13547.
    [11] J. N. Nian, C. C. Tsai, P. C. Lin, H. Teng, J. Electrochem. Soc. 2009, 156, H567.
    [12] U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, S. O. Kim, Adv. Mater. 2014, 26, 40.
    [13] H. X. Wang, Q. Wang, K. G. Zhou, H. L. Zhang, Small 2013, 9, 1266.
    [14] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, Phys. Rev. Lett.. 2008, 100, 016602.
    [15] P. Avouris, Nano Lett. 2010, 10, 4285.
    [16] T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, A. Hartschuh, ACS Nano 2009, 3, 3963.
    [17] J. Ito, J. Nakamura, A. Natori, J. Appl. Phys. 2008, 103, 113712.
    [18] H. Liu, Y. Liu, D. Zhu, J. Mater. Chem. 2011, 21, 3335.
    [19] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, H. Dai, Science 2009, 324, 768.
    [20] K. P. Loh, Q. Bao, P. K. Ang, J. Yang, J. Mater. Chem. 2010, 20, 2277.
    [21] P. Rani, V. K. Jindal, RSC Advances 2013, 3, 802.
    [22] I. V. Lightcap, T. H. Kosel, P. V. Kamat, Nano Lett. 2010, 10, 577.
    [23] J. Ryu, E. Lee, S. Lee, J. Jang, Chem. Comm. 2014, 50, 15616.
    [24] J. G. Radich, P. V. Kamat, ACS Nano 2013, 7, 5546.
    [25] H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 2010, 4, 380.
    [26] X.-Y. Zhang, H.-P. Li, X.-L. Cui, Y. Lin, J. Mater. Chem. 2010, 20, 2801.
    [27] W. Fan, Q. Lai, Q. Zhang, Y. Wang, J. Phys. Chem. C 2011, 115, 10694.
    [28] Q. Xiang, J. Yu, M. Jaroniec, Nanoscale 2011, 3, 3670.
    [29] B. Li, H. Cao, J. Mater. Chem. 2011, 21, 3346.
    [30] X.-J. Lv, W.-F. Fu, H.-X. Chang, H. Zhang, J.-S. Cheng, G.-J. Zhang, Y. Song, C.-Y. Hu, J.-H. Li, J. Mater. Chem. 2012, 22, 1539.
    [31] J. S. Lee, K. H. You, C. B. Park, Adv. Mater. 2012, 24, 1084.
    [32] Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 2012, 134, 6575.
    [33] S. Min, G. Lu, J. Phys. Chem. C 2011, 115, 13938.
    [34] Z. Mou, Y. Dong, S. Li, Y. Du, X. Wang, P. Yang, S. Wang, Int. J. Hydrogen Energy 2011, 36, 8885.
    [35] X. Wang, L. Zhi, K. Müllen, Nano Lett. 2008, 8, 323.
    [36] A. Mukherji, B. Seger, G. Q. Lu, L. Wang, ACS Nano 2011, 5, 3483.
    [37] T. M. Suzuki, A. Iwase, H. Tanaka, S. Sato, A. Kudo, T. Morikawa, J. Mater. Chem. A 2015, 3, 13283.
    [38] A. Iwase, Y. H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 2011, 133, 11054.
    [39] K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, J. Am. Chem. Soc. 2010, 132, 5858.
    [40] P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, S. C. J. Loo, Nanoscale 2012, 4, 3875.
    [41] A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat Mater 2011, 10, 456.
    [42] D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, E. Tondello, ChemSusChem 2009, 2, 230.
    [43] N. Zhang, M. Q. Yang, S. Liu, Y. Sun, Y. J. Xu, Chem. Rev. 2015, 115, 10307.
    [44] E. C. Lim, S. K. Chakrabarti, Chem. Phys. Lett. 1967, 1, 28.
    [45] E. C. Lim, S. K. Chakrabarti, J. Phys. Chem. Phys. 1967, 47, 4726.
    [46] J. E. Adams, W. W. Mantulin, J. R. Huber, J. Am. Chem. Soc. 1973, 95, 5477.
    [47] H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Adv. Mater. 2012, 24, 5333.
    [48] A. Köhler, H. Bässler, Mater. Sci. Eng. R-Rep. 2009, 66, 71.
    [49] A. Köhler, J. S. Wilson, R. H. Friend, M. K. Al-Suti, M. S. Khan, A. Gerhard, H. Bässler, J. Phys. Chem. Phys. 2002, 116, 9457.
    [50] B. R. Henry, W. Siebrand, J. Phys. Chem. Phys. 1971, 54, 1072.
    [51] D. S. McClure, J. Phys. Chem. Phys. 1952, 20, 682.
    [52] M. L. Mueller, X. Yan, J. A. McGuire, L.-s. Li, Nano Lett. 2010, 10, 2679.
    [53] M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Annu. Rev. Phys. Chem. 2007, 58, 719.
    [54] Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat Mater 2015, 14, 685.
    [55] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
    [56] T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang, H. Teng, Adv. Funct. Mater. 2010, 20, 2255.
    [57] T. F. Yeh, F. F. Chan, C. T. Hsieh, H. Teng, J. Phys. Chem. C 2011, 115, 22587.
    [58] T. F. Yeh, S. J. Chen, H. Teng, Nano Energy 2015, 12, 476.

    Chapter 3
    [1] T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Adv. Funct. Mater. 2010, 20,
    2255.
    [2] T.F. Yeh, F.-F. Chan, C.-T. Hsieh, H. Teng, J. Phys. Chem. C 2011, 115, 22587.
    [3] T.-F. Yeh, S.-J. Chen, C.-S. Yeh, H. Teng, J. Phys. Chem. C 2013, 117, 6516.
    [4] T.F. Yeh, C.Y. Teng, S.J. Chen, H. Teng, Adv. Mater. 2014, 26, 3297.
    [5] T. F. Yeh, S.J. Chen, H. Teng, Nano Energy 2015, 12, 476.
    [6] T.F. Yeh, J. Cihlář, C.Y. Chang, C. Cheng, H. Teng, Mater. Today 2013, 16, 78.
    [7] A.K. Geim, K.S. Novoselov, Nat. Mater. 2007, 6, 183.
    [8] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod.
    Phys. 2009, 81, 109.
    [9] C.Y. Teng, T.F. Yeh, K.I. Lin, S.-J. Chen, M. Yoshimura, H. Teng, J. Mater. Chem. C
    2015, 3, 4553.
    [10] W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
    [11] G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 2008, 3, 270.
    [12] J. Ito, J. Nakamura, A. Natori, J. Appl. Phys. 2008, 103, 113712.
    [13] X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, Science
    2009, 324, 768.
    [14] G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J.R. Gong, Adv. Mater. 2013, 25, 3820.
    [15] Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, J.G.
    Hou, ACS Nano. 2010, 4, 3033.
    [16] Z. Xiong, L.L. Zhang, J. Ma, X.S. Zhao, Chem. Comm. 2010, 46, 6099.
    [17] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano
    lett. 2007, 7, 238.
    [18] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y.
    Wu, S.T. Nguyen, R.S. Ruoff, Carbon 2007, 45, 1558.
    [19] H. He, C. Gao, Chem. Mater. 2010, 22,5054.
    [20] S.R. Kelemen, M. Afeworki, M.L. Gorbaty, P.J. Kwiatek, M.S. Solum, J.Z. Hu, R.J.
    Pugmire, Energy Fuels 2002, 16, 1507.
    [21] R. Pietrzak, Fuel 2009, 88, 1871.
    [22] H. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2012, 2, 781.
    [23] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Nano Lett. 2010, 10, 4975.
    [24] H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Adv.
    Mater. 2012, 24, 5333.
    [25] A.C. Ferrari, J. Robertson, Phys. Rev. B 2000, 61, 14095.
    [26] M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito,
    Phys. chem. chem. phys. 2007, 9, 1276.
    [27] M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B.
    Capaz, C.A. Achete, A. Jorio, Carbon 2010, 48, 1592.
    [28] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 2009, 473,
    51.
    [29] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach,
    R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 2006, 442, 282.
    [30] S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.T. Nguyen, R.S. Ruoff,
    Chem. Mater. 2008, 20, 6592.
    [31] D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C.
    Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science
    2009, 323, 610.
    [32] I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano lett. 2010, 10, 577.
    [33] C. Xu, X. Wang, J. Zhu, J. Phys. Chem. C 2008, 112, 19841.
    [34] Y. Xu, L. Zhao, H. Bai, W. Hong, C. Li, G. Shi, J. Am. Chem. Soc. 2009, 131, 13490.
    [35] K.P. Loh, Q. Bao, P.K. Ang, J. Yang, J. Mater. Chem. 2010, 20, 2277.
    [36] D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 2010, 22, 734.
    [37] G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M.
    Chhowalla, Adv. Mater. 2010, 22, 505.
    [38] Z. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, J. Am. Chem. Soc. 2009, 131, 898.
    [39] Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, Z. Zhang, Chem. Comm. 2010, 46,
    7319.
    [40] D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun,
    Nanoscale 2013, 5, 12272.
    [41] D. Yu, Y. Yang, M. Durstock, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 5633.
    [42] S. Wang, D. Yu, L. Dai, D.W. Chang, J.-B. Baek, ACS Nano 2011, 5, 6202.
    [43] J. Yoshimura, Y. Ebina, J. Kondo, K. Domen, A. Tanaka, J. Phys. Chem. 1993, 97,
    1970.
    [44] A. Kasahara, K. Nukumizu, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K.
    Domen, J. Phys. Chem. B. 2003, 107, 791.
    [45] R. Konta, T. Ishii, H. Kato, A. Kudo, J. Phys. Chem. B 2004, 108, 8992.
    [46] S.S.K. Ma, K. Maeda, K. Domen, Catal. Sci. Technol. 2012, 2, 818.

    Chapter 4
    [1] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 2006, 440, 295.
    [2] M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, Renew. Sust. Energ. Rev. 2007, 11, 401.
    [3] A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
    [4] K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655.
    [5] Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S. B. Cronin, Nano Lett. 2011, 11, 1111.
    [6] G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J. R. Gong, Adv. Mater. 2013, 25, 3820.
    [7] B. C. M. Martindale, G. A. M. Hutton, C. A. Caputo, E. Reisner, J. Am. Chem. Soc. 2015, 137, 6018.
    [8] Q. Xiang, B. Cheng, J. Yu, Angew. Chem. Int. Ed. 2015, 54, 11350.
    [9] H. J. Yun, H. Lee, N. D. Kim, D. M. Lee, S. Yu, J. Yi, ACS Nano 2011, 5, 4084.
    [10] A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 1999, 121, 11459.
    [11] H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc. 2003, 125, 3082.
    [12] X. Yan, X. Cui, B. Li, L.-s. Li, Nano Lett. 2010, 10, 1869.
    [13] A. Kudo, A. Tanaka, K. Domen, T. Onishi, J. Catal. 1988, 111, 296.
    [14] T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang, H. Teng, Adv. Funct. Mater. 2010, 20, 2255.
    [15] T. F. Yeh, F. F. Chan, C. T. Hsieh, H. Teng, J. Phys. Chem. C 2011, 115, 22587.
    [16] T. F. Yeh, S. J. Chen, C. S. Yeh, H. Teng, J. Phys. Chem. C 2013, 117, 6516.
    [17] T. F. Yeh, C. Y. Teng, S. J. Chen, H. Teng, Adv. Mater. 2014, 26, 3297.
    [18] T. F. Yeh, S. J. Chen, H. Teng, Nano Energy 2015, 12, 476.
    [19] L. C. Chen, T. F. Yeh, Y. L. Lee, H. Teng, Appl. Catal., A. 2016, 521, 118.
    [20] Y. Ma, A. S. Foster, A. V. Krasheninnikov, R. M. Nieminen, Phys. Rev. B 2005, 72.
    [21] L. Tang, R. Ji, X. Li, K. S. Teng, S. P. Lau, J. Mater. Chem. C 2013, 1, 4908.
    [22] S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong, S. Jeon, ACS Nano 2013, 7, 1239.
    [23] H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Adv. Mater. 2012, 24, 5333.
    [24] S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, X. Wang, H. Sun, B. Yang, Adv. Funct. Mater. 2012, 22, 4732.
    [25] Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, Z. Zhang, Chem. Comm. 2010, 46, 7319.
    [26] G. S. Kumar, R. Roy, D. Sen, U. K. Ghorai, R. Thapa, N. Mazumder, S. Saha, K. K. Chattopadhyay, Nanoscale 2014, 6, 3384.
    [27] W. Chen, L. Duan, L. Wang, D. Zhu, Environ. Sci. Technol. 2008, 42, 6862.
    [28] Q. Liu, B. Guo, Z. Rao, B. Zhang, J. R. Gong, Nano Lett. 2013, 13, 2436.
    [29] H. Tetsuka, A. Nagoya, R. Asahi, J. Mater. Chem. C 2015, 3, 3536.
    [30] P. T. Hsiao, L. C. Chen, T. L. Li, H. Teng, J. Mater. Chem. 2011, 21, 19402.
    [31] E. C. Lim, S. K. Chakrabarti, Chem. Phys. Lett. 1967, 1, 28.
    [32] E. C. Lim, S. K. Chakrabarti, J. Phys. Chem. Phys. 1967, 47, 4726.
    [33] J. E. Adams, W. W. Mantulin, J. R. Huber, J. Am. Chem. Soc. 1973, 95, 5477.
    [34] A. Köhler, H. Bässler, Mater. Sci. Eng. R-Rep. 2009, 66, 71.
    [35] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
    [36] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 2007, 7, 238.
    [37] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.
    [38] S. Park, J. An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni, S. T. Nguyen, R. S. Ruoff, Chem. Mater. 2008, 20, 6592.
    [39] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Science 2009, 323, 610.
    [40] H. Liu, Y. Liu, D. Zhu, J. Mater. Chem. 2011, 21, 3335.
    [41] L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Phys. Rep. 2009, 473, 51.
    [42] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
    [43] H. He, C. Gao, Chem. Mater. 2010, 22, 5054.
    [44] R. Rozada, J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. D. Tascón, Nano Res. 2013, 6, 216.
    [45] S. R. Kelemen, M. Afeworki, M. L. Gorbaty, P. J. Kwiatek, M. S. Solum, J. Z. Hu, R. J. Pugmire, Energy Fuels 2002, 16, 1507.
    [46] R. Pietrzak, Fuel 2009, 88, 1871.
    [47] H. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2012, 2, 781.
    [48] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J. R. Gong, Nano Lett. 2010, 10, 4975.
    [49] D. Yu, Y. Yang, M. Durstock, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 5633.
    [50] S. Wang, D. Yu, L. Dai, D. W. Chang, J.-B. Baek, ACS Nano 2011, 5, 6202.
    [51] J. Ryu, E. Lee, S. Lee, J. Jang, Chem. Comm. 2014, 50, 15616.
    [52] C. Zhang, R. Hao, H. Liao, Y. Hou, Nano Energy 2013, 2, 88.
    [53] D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 2010, 22, 734.
    [54] G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, M. Chhowalla, Adv. Mater. 2010, 22, 505.
    [55] Z. Luo, Y. Lu, L. A. Somers, A. T. C. Johnson, J. Am. Chem. Soc. 2009, 131, 898.
    [56] D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, Nanoscale 2013, 5, 12272.
    [57] C. Xu, W. W. Webb, J. Opt. Soc. Am. B 1996, 13, 481.
    [58] Q. Xu, Q. Zhou, Z. Hua, Q. Xue, C. Zhang, X. Wang, D. Pan, M. Xiao, ACS Nano 2013, 7, 10654.
    [59] M. L. Mueller, X. Yan, J. A. McGuire, L.-s. Li, Nano Lett. 2010, 10, 2679.
    [60] A. Tsuda, A. Osuka, Science 2001, 293, 79.
    [61] S. C. Ray, C. W. Pao, H. M. Tsai, J. W. Chiou, W. F. Pong, C. W. Chen, M.-H. Tsai, P. Papakonstantinou, L. C. Chen, K. H. Chen, W. G. Graham, Appl. Phys. Lett. 2007, 90, 192107.
    [62] J. W. Chiou, S. C. Ray, S. I. Peng, C. H. Chuang, B. Y. Wang, H. M. Tsai, C. W. Pao, H. J. Lin, Y. C. Shao, Y. F. Wang, S. C. Chen, W. F. Pong, Y. C. Yeh, C. W. Chen, L. C. Chen, K. H. Chen, M. H. Tsai, A. Kumar, A. Ganguly, P. Papakonstantinou, H. Yamane, N. Kosugi, T. Regier, L. Liu, T. K. Sham, J. Phys. Chem. C 2012, 116, 16251.
    [63] D. Wang, J. Yang, X. Li, D. Geng, R. Li, M. Cai, T.-K. Sham, X. Sun, Energy Environ. Sci. 2013, 6, 2900.
    [64] S. K. Lower, M. A. El-Sayed, Chem. Rev. 1966, 66, 199.
    [65] N. Zhang, M. Q. Yang, S. Liu, Y. Sun, Y. J. Xu, Chem. Rev. 2015, 115, 10307.
    [66] S. W. Cao, Y. P. Yuan, J. Fang, M. M. Shahjamali, F. Y. C. Boey, J. Barber, S. C. Joachim Loo, C. Xue, Int. J. Hydrogen Energy 2013, 38, 1258.
    [67] M. Zhang, X. Wang, Energy Environ. Sci. 2014, 7, 1902.
    [68] Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C 2011, 115, 7355.
    [69] J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Nat. Commun. 2012, 1139.
    [70] S. S. K. Ma, K. Maeda, K. Domen, Catal. Sci. Technol. 2012, 2, 818.
    [71] R. Konta, T. Ishii, H. Kato, A. Kudo, J. Phys. Chem. B 2004, 108, 8992.
    [72] H. G. Kim, D. W. Hwang, J. S. Lee, J. Am. Chem. Soc. 2004, 126, 8912.
    [73] H. G. Kim, O. S. Becker, J. S. Jang, S. M. Ji, P. H. Borse, J. S. Lee, J. Solid State Chem. 2006, 179, 1214.
    [74] J. Yoshimura, Y. Ebina, J. Kondo, K. Domen, A. Tanaka, J. Phys. Chem. 1993, 97, 1970.
    [75] A. Kasahara, K. Nukumizu, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Phys. Chem. B 2003, 107, 791.
    [76] L. Amirav, A. P. Alivisatos, J. Phys. Chem. Lett. 2010, 1, 1051.
    [77] I. Tsuji, H. Kato, A. Kudo, Angew. Chem. Int. Ed. 2005, 44, 3565.
    [78] Z. Wang, J. Hou, C. Yang, S. Jiao, K. Huang, H. Zhu, Energy Environ. Sci. 2013, 6, 2134.
    [79] J. Choi, S. Y. Ryu, W. Balcerski, T. K. Lee, M. R. Hoffmann, J. Mater. Chem. 2008, 18, 2371.
    [80] F. Chen, J. Zai, M. Xu, X. Qian, J. Mater. Chem. A 2013, 1, 4316.
    [81] T. Zhu, H. B. Wu, Y. Wang, R. Xu, X. W. Lou, Adv. Energy Mater. 2012, 2, 1497.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE