簡易檢索 / 詳目顯示

研究生: 阮春后
Nguyen-Xuan Hau
論文名稱: 利用台灣樹輪氧同位素解讀東亞夏季季風五百年變化
Deciphering East Asian summer monsoon over the past half millennium using tree-ring oxygen isotopes in Taiwan
指導教授: 陳一菁
Chen, I-Ching
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 132
中文關鍵詞: 稳定氧同位素树状气候学东亚夏季季风ENSO台湾
外文關鍵詞: stable oxygen isotope, dendroclimatology, East Asia summer monsoon, ENSO, Taiwan
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球氣候暖化改變全球水循環和降水模式,這種變化可能比溫度更直接地影響生態系統和人類福祉。東亞夏季季風(East Asia Summer Monsson, EASM)在全球季風系統中極為活躍,它的動態大規模影響東亞水文特徵、生態系統穩定性、農業生產、人類活動與極端氣候災害。在全球快速變暖的趨勢下,EASM的水文氣候可能變得更不可預測與潛藏災難性,瞭解EASM降雨的長期動態與影響機制具有重大的社會和科學意義。然而,百年尺度的儀器觀測記錄無法呈現EASM長期的自然變異、它與其他氣候系統的關係,難以推斷它對當前和未來全球氣候變遷的反應;目前EASM長期、高品質的氣候代理紀錄仍極為稀少。本研究以取自台灣-EASM的中心位置-的樹輪穩定氧同位素(δ18Otr),重建過去數百年、高解析度的EASM降水變化;依序探討樹輪氧同位素反應氣候的機制,重建歷史氣候以解讀地景與社會變遷,最後指出五百年來太平洋年代際振盪(Pacific Decadal Oscillation, PDO)調節聖嬰與南方震盪(El Niño-Southern Oscillation, ENSO)、及其與EASM降雨的關係,對EASM的自然變異與人為氣候變遷影響提出新的見解。
    在第二章,我探討控制東亞地區δ18Otr變化的主要機制-究竟是源水上游條件或各地氣候因素決定δ18Otr訊號,這在解讀熱帶和亞洲季風氣候區的氣候重建一直存在高度爭議。我從臺灣開發了一個橫跨100年的、具有年度解析度的δ18Otr資料集;這個資料集取自不同樹種、緯度、海拔與氣候區,時間涵括了整個20世紀和21世紀初,從而有利於與儀器的氣候記錄進行比較。δ18Otr的資料序列呈現出高度相關與一致的氣候反應,表明大尺度的氣候因素主要控制δ18Otr而不是局部因素。δ18Otr很好地反應夏季季風降水,且是來自上游區域的動態、而非本地雨量,說明上游降水過程在控制各地δ18Otr變化中的廣泛影響。這個發現釐清δ18Otr和其他自然代用指標中複雜的氣候訊號,對東亞以及熱帶季風地區的樹輪氣候學有重要意涵。另外,大尺度的海洋與大氣作用,如ENSO和西北太平洋副熱帶高壓(The Western North Pacific Subtropical High, WNPSH)的動態對δ18Otr訊號有很直接的影響。這個結果一方面解釋δ18Otr訊號的空間一致性來自相當距離的上游條件,也表明臺灣的δ18Otr是研究海洋和大氣作用下,EASM長期變化的良好氣候代理。
    第三章擴展了δ18Otr反應源水上游條件的發現,探討氣候因素如何作用於臺灣西南部沿海快速的地景與社會變遷。臺灣西南部的台江內海原為荷據時期重要的航運、貿易轉運站,但在兩百年內快速消失,現已成為嘉南平原與都市用地。這段滄海桑田的過程,在史籍上僅有1823年大雨造成台江浮覆的記錄,對應的歷史氣候資訊極為缺乏。我分析阿里山δ18Otr訊號發現,它反應台灣南部的降水與河流流量,並可良好重建過去400年的降水變化。重建結果顯示,兩個不尋常的高頻率強暴雨期發生在西元1730年代和1820年代,與倒風和台江內海的消失時間相符。但另一方面,近期台灣海岸反而面臨嚴重侵蝕,除人為因素以外,氣候重建結果也指出,20世紀末正面臨過去四個世紀以來最嚴重的乾旱,可能造成低窪地帶流量和沉積物的減少,從而加劇海岸侵蝕。氣候可透過快速改變地景、參與社會變遷的過程,造成氣候變遷調適的多元挑戰,沿海管理策略尤其應考慮降水變化帶來的地景衝擊。
    在第四章,我探討人為氣候暖化是否作用於近期增強的ENSO-EASM關係;這個現象背後的原因,在百年的氣候紀錄與分析中一直沒有結論。我擴展了臺灣東南部的δ18Otr記錄至過去五百年,並重建EASM相關的降水。與PDO和ENSO代用指標的比較表明,過去五百年來,PDO是ENSO-EASM關係非穩定的原因;正(負)PDO階段增強(解構)了這種關係;ENSO-EASM關係的增強與PDO和ENSO的高振幅同時存在。重要的是,目前的增強關係仍然落在其自然範圍內,表明內部驅力的作用,因此區分EASM降水的人為影響和自然作用仍然具有挑戰性。這個發現填補了PDO-ENSO-EASM關係的知識缺口,對從機制上理解季風降雨、以及預測東亞地區未來的氣候變化至關重要。

    Global warming could increase atmospheric moisture, changing the global hydrological cycle and precipitation pattern. Such changes might directly affect the ecosystem and human well-being more than temperature. As the most dynamic component of the global monsoon system, East Asian summer monsoon (EASM) variability accompanies by hydroclimatic hazards, influencing all aspects of hydroclimatology, ecology, and human activities in East Asia. The hydroclimate in EASM may become more disastrous and unpredictable under the global warming context. Therefore, understanding the dynamics of EASM precipitation and improving our ability to predict EASM is of great social and scientific interest. However, the sparse and short observational records preclude our understanding of long-term EASM variability and how it responds to current and future global warming. Long-term, high-quality proxy-based EASM reconstructions are desperately needed.
    In this dissertation, using stable oxygen isotope ratio in tree-ring cellulose (δ18Otr), I investigated the mechanism by which δ18Otr in Taiwan served as an excellent EASM proxy and reconstructed EASM precipitation over the past few centuries. I demonstrated how δ18Otr responds to upstream precipitation and large-scale atmosphere-ocean interactions instead of local precipitation. I reconstructed the historical climates to interpret the significant influences of EASM precipitation on the rapid geomorphological and social changes. Finally, I provided evidence that the Pacific Decadal Oscillation (PDO) persistently modulated the relationship between El Niño-Southern Oscillation (ENSO) and EASM rainfall over the past 500 years. Overall, I demonstrated that δ18Otr from Taiwan is a powerful tool to decipher EASM precipitation changes on inter-annual to centennial timescales. The results provide crucial insights into the dynamics of EASM precipitation under natural and anthropogenic forcings, which are essential for the mechanistic understanding of the current condition and better predicting future climate change over the East Asia region.
    In chapter 2, I developed a 100-year precise-dated, annual-resolved δ18Otr network from different species and locations in Taiwan, the heart of EASM. The δ18Otr continuously covered the entire 20th and early 21st centuries, thus facilitating comparison with the climate data recorded by instruments. The primary purpose of this chapter is to decipher the controversial climate factors controlling the variation of δ18Otr in the East Asia region. The δ18Otr network exhibited high inter-correlation and similar climate response, albeit with distinct species, latitudes, altitudes, and local climates, suggesting that common climate factors at a large scale control the δ18Otr rather than local factors. Climate response analyses found that the δ18Otr captured well the summer monsoon climates; precipitation was the most dominant factor controlling the δ18Otr variations. Importantly, I revealed that the δ18Otr reflects regional precipitation over the upstream moisture instead of local precipitation, highlighting the substantial role of the upstream rainout process in controlling local δ18Otr variations. I demonstrated that δ18Otr is a good proxy for upstream regional precipitation rather than a proxy of local precipitation. The finding disentangles the complicated climate signal in δ18Otr and other natural proxies that have been controversial over tropical and Asian monsoonal regions. The results presented here have important implications for the dendroclimatological field in East Asia and tropical monsoon regions.
    As another noteworthy finding in Chapter 2, I found large-scale oceanic and atmospheric forcings such as the El Niño Southern Oscillation (ENSO) and Western North Pacific Subtropical High (WNPSH) have a strong influence on the δ18Otr variation. This result may explain the spatial coherent signal δ18Otr from the considerable distance over Asia monsoon. The finding demonstrated that the δ18Otr proxy from Taiwan is a good proxy to examine the mechanism of EASM variability under oceanic and atmospheric forcings (see Chapter 4).
    Chapter 3 expands on the finding of the upstream regional precipitation signal in δ18Otr. I extended the Alishan δ18Otr record, which allowed me to reconstruct 400-year precipitation and decode the role of climate factors in landscape changes of coastal southwestern Taiwan over a long history. Interestingly, the reconstruction reveals two unusual periods of high frequent and intense heavy rainfall during the 1730s and 1820s CE, which resulted in the disappearances of Daofeng and Taijiang Inner Seas in southwest Taiwan. The late 20th century was characterized as the most severe drought over the past four centuries, together with human factors, which may additionally cause the reduction of flow and sediments in the lowland, thus exacerbating the coastal erosion problem of the Island recently. The results indicated climate as a contributing factor to landscape changes in the region over the past 400 years, suggesting precipitation variability should be considered in coastal management strategies.
    In Chapter 4, I investigated whether anthropogenic warming contributes to the recently enhanced ENSO-EASM relationship. The mechanism behind this phenomenon has been controversial in the century-long climate records. I generated 500-year δ18Otr records from southeastern Taiwan and reconstructed the EASM-related precipitation. Comparing with the well-established PDO and ENSO proxies from the Pacific basin revealed that the PDO was responsible for the nonstationary ENSO-EASM precipitation relationship over the past half-millennium. The positive (negative) PDO phase augmented (deconstructed) the relationship. Notably, the present enhanced ENSO-EASM relationship was concurrent with high PDO and ENSO amplitude and fell within its natural range, implying the essential role of internal variability. The distinction between anthropogenic and natural influence remains challenging. These findings fill a knowledge gap in the PDO-ENSO-EASM relationship. Predicting ENSO and EASM precipitation should consider the modulation effects of PDO.

    ABSTRACT (Chinese) i ABSTRACT (English) iv Acknowledgement vii List of tables and figures xiii Chapter 1. Overview of dissertation 1 1.1. Statement of the problem 1 1.2. Background and existing knowledge 2 1.2.1. The East Asia summer monsoon 2 1.2.2. The El Niño-Southern Oscillation 5 1.2.3. Tree-ring, an annually-resolved and precisely-dated proxy 6 1.2.4. Oxygen stable isotope in tree-ring, a potential proxy for paleo-monsoon 9 1.2.5. Why Taiwan Island? 10 1.3. Research objective 12 1.4. Tree-ring data collection strategy 12 1.5. Tree-ring δ18O data collection strategy 16 1.6. Summary of main findings 19 1.7. References 20 Chapter 2. Upstream regional, but not local precipitation controls tree-rings oxygen isotope in East Asian monsoon and its implications for paleoclimate reconstruction 29 2.1. Abstract 29 2.2. Introduction 30 2.3. Materials and methods 33 2.3.1. Study area setting 33 2.3.2. Tree-ring δ18O chronology and network development 35 2.3.3. Climatic and statistical analysis 36 2.4. Results and discussions 38 2.4.1. Coherent variations of δ18O in tree-ring cellulose 38 2.4.2. Regional, but not local, precipitation is the dominant sign in δ18Otr 41 2.4.3. Upstream rainout process controls the variation of δ18Otr 52 2.4.4. The influence of large-scale oceanic and atmospheric forcings 59 2.5. Conclusions 62 2.6. References 63 Chapter 3. Tree-ring δ18O reveals the contribution of climate factors to past and modern landscape changes over southern coastal Taiwan 72 3.1. Abstract 72 3.2. Introduction 73 3.3. Materials and Methods 77 3.3.1. Tree-ring δ18O chronology development 77 3.3.2. Climate analysis 80 3.3.3. Split calibration and verification test 81 3.4. Results and discussions 81 3.4.1. Climate signal in tree-ring δ18O 81 3.4.2. Southern Taiwan precipitation reconstruction 83 3.4.3. Precipitation variability and its contribution to landscape changes 86 3.4.4. Influence of Pacific Oscillations 91 3.5. Conclusions 94 3.6. References 95 Chapter 4. Tree-ring δ18O reveals the Pacific Decadal Oscillation modulated ENSO-East Asian summer monsoon relationship over the past half-millennium 100 4.1. Abstract 100 4.2. Introduction 101 4.3. Materials and methods 103 4.3.1. Study site and tree-ring data 103 4.3.2. Climatic and statistical analysis 105 4.4. Results and Discussions 107 4.4.1. Tree-ring δ18O chronology 107 4.4.2. Climatic signals in tree-ring δ18O 110 4.4.3. Southeast Taiwan precipitation reconstruction 112 4.4.4. ENSO-monsoon precipitation relationship and the influence of PDO 118 4.5. Conclusions 124 4.6. References 125

    References 1

    Anchukaitis KJ, Evans MN, Wheelwright NT, Schrag DP (2008) Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. J Geophys Res 113:G03030. https://doi.org/10.1029/2007JG000613
    Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39:1–13. https://doi.org/10.1029/2003WR002086
    Brienen RJW, Helle G, Pons TL, et al (2012) Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Nino-Southern Oscillation variability. Proc Natl Acad Sci 109:16957–16962. https://doi.org/10.1073/pnas.1205977109
    Buckley BM, Anchukaitis KJ, Penny D, et al (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci 107:6748–6752. https://doi.org/10.1073/pnas.0910827107
    Buckley BM, Hansen KG, Griffin KL, et al (2018) Blue intensity from a tropical conifer’s annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia 50:10–22. https://doi.org/10.1016/j.dendro.2018.04.003
    Buckley BM, Palakit K, Duangsathaporn K, et al (2007) Decadal scale droughts over northwestern Thailand over the past 448 years: Links to the tropical Pacific and Indian Ocean sectors. Clim Dyn 29:63–71. https://doi.org/10.1007/s00382-007-0225-1
    Buckley BM, Stahle DK, Luu HT, et al (2017) Central Vietnam climate over the past five centuries from cypress tree rings. Clim Dyn 48:3707–3723. https://doi.org/10.1007/s00382-016-3297-y
    Cai Z, Tian L, Bowen GJ (2019) Influence of Recent Climate Shifts on the Relationship Between ENSO and Asian Monsoon Precipitation Oxygen Isotope Ratios. J Geophys Res Atmos 124:7825–7835. https://doi.org/10.1029/2019JD030383
    Chang CP (2004) East Asian Monsoon. World Scientific
    Chang CP, Zhang Y, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical pacific SSTs. Part II: Meridional structure of the monsoon. J Clim 13:4326–4340. https://doi.org/10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2
    Chang Y-S (2020) Using tree rings stable oxygen to reconstruct historical climates in Taijiang Inland Sea in Taiwan (in Chinese with English Abstract). National Cheng Kung Univeristy
    Chen JM, Li T, Shih CF (2008) Asymmetry of the El Niño-spring rainfall relationship in Taiwan. J Meteorol Soc Japan 86:297–312. https://doi.org/10.2151/jmsj.86.297
    Chen S-H (2015) An attempt to reconstruct past climate variability for a montane cloud forest in Taiwan using tree ring stable oxygen isotope (in Chinese with English Abstract). National Cheng Kung University
    Cook ER, Krusic PJ, Anchukaitis KJ, et al (2013) Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. Clim Dyn 41:2957–2972. https://doi.org/10.1007/s00382-012-1611-x
    Cook, Kairiukstis (1990) Methods of Dendrochronology: Applications in the Environmental Sciences
    D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the “Divergence Problem” in Northern Forests: A review of the tree-ring evidence and possible causes. Glob Planet Change 60:289–305. https://doi.org/10.1016/j.gloplacha.2007.03.004
    Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. https://doi.org/10.3402/tellusa.v16i4.8993
    Deser C, Alexander MA, Xie S-P, Phillips AS (2009) Sea Surface Temperature Variability: Patterns and Mechanisms. https://doi.org/10.1146/annurev-marine-120408-151453
    Duan J, Zhang Q Bin, Lv L, Zhang C (2012) Regional-scale winter-spring temperature variability and chilling damage dynamics over the past two centuries in southeastern China. Clim Dyn 39:919–928. https://doi.org/10.1007/s00382-011-1232-9
    Evans MN, Schrag DP (2004) A stable isotope-based approach to tropical dendroclimatology. Geochim Cosmochim Acta 68:3295–3305
    February EC, Stock WD (1998) An assessment of the dendrochronological potential of two Podocarpus species. The Holocene 8:747–750. https://doi.org/10.1191/095968398674919061
    Fritts HC (1976) Tree Rings and Climate. Academic Press
    Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262. https://doi.org/10.1146/annurev.earth.24.1.225
    Grissino-Mayer HD (2001) Evaluating Crossdating Accuracy: A Manual and Tutorial for the Computer Program COFECHA. Tree-Ring Res
    Hansen KG, Buckley BM, Zottoli B, et al (2017) Discrete seasonal hydroclimate reconstructions over northern Vietnam for the past three and a half centuries. Clim Change 145:177–188. https://doi.org/10.1007/s10584-017-2084-z
    Holmes RL (1983) Computer-assisted quality control in tree- ring dating and measurement. Tree-ring Bull 43:69–78. https://doi.org/10.1016/j.ecoleng.2008.01.004
    Hu K, Huang G, Zheng XT, et al (2014) Interdecadal variations in ENSO influences on northwest Pacific-East Asian early summertime climate simulated in CMIP5 models. J Clim 27:5982–5998. https://doi.org/10.1175/JCLI-D-13-00268.1
    Huang G, Hu K, Xie SP (2010) Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. J Clim 23:5294–5304. https://doi.org/10.1175/2010JCLI3577.1
    Huang R, Chen J, Huang G (2007) Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China. In: Advances in Atmospheric Sciences. Springer, pp 993–1023
    Hughes MK (2002) Hughes et al 2002 Dendrochronology in climatology.pdf. 2:95–116
    Hughes MK, Swetnam TW, Diaz HF (2011) Dendroclimatology : progress and prospects
    IPCC (2014a) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S
    IPCC (2014b) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp
    IPCC (2013a) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A
    IPCC (2013b) Christensen, J.H., K. Krishna Kumar, E. Aldrian, S.-I. An, I.F.A. Cavalcanti, M. de Castro, W. Dong, P. Goswami, A. Hall, J.K. Kanyanga, A. Kitoh, J. Kossin, N.-C. Lau, J. Renwick, D.B. Stephenson, S.-P. Xie and T. Zhou, 2013: Climate Phenomena and their
    Jiang Z, Chen GTJ, Wu MC (2003) Large-scale circulation patterns associated with heavy spring rain events over Taiwan in strong ENSO and Non-ENSO years. Mon Weather Rev 131:1769–1782. https://doi.org/10.1175//2561.1
    Kagawa A, Sano M, Nakatsuka T, et al (2015) An optimized method for stable isotope analysis of tree rings by extracting cellulose directly from cross-sectional laths. Chem Geol 393–394:16–25. https://doi.org/10.1016/j.chemgeo.2014.11.019
    Kalnay E, Kanamitsu M, Kistler R, et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. Am Meteorol Soc. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    Kuo YC, Lee MA, Lu MM (2016) Association of Taiwan’s Rainfall Patterns with Large-Scale Oceanic and Atmospheric Phenomena. Adv Meteorol 2016:. https://doi.org/10.1155/2016/3102895
    Larsson L-Å (2016) CDendro&CooRecorder program package version 8.1.1
    Lau K-M, Li M-T (1984) The Monsoon of East Asia and its Global Associations—A Survey. Bull Am Meteorol Soc 65:114–125. https://doi.org/10.1175/1520-0477(1984)065<0114:tmoeaa>2.0.co;2
    Li J, Cook ER, Chen F, et al (2009) Summer monsoon moisture variability over China and Mongolia during the past four centuries. Geophys Res Lett 36:L22705. https://doi.org/10.1029/2009GL041162
    Li J, Wu Z, Jiang Z, He J (2010) Can global warming strengthen the East Asian summer monsoon? J Clim 23:6696–6705. https://doi.org/10.1175/2010JCLI3434.1
    Li Y, Wang N, Zhou X, et al (2014) Synchronous or asynchronous Holocene Indian and East Asian summer monsoon evolution: A synthesis on Holocene Asian summer monsoon simulations, records and modern monsoon indices. Glob Planet Change 116:30–40. https://doi.org/10.1016/j.gloplacha.2014.02.005
    Lin CC, Liou YJ, Huang SJ (2015) Impacts of Two-Type ENSO on Rainfall over Taiwan. Adv Meteorol 2015:. https://doi.org/10.1155/2015/658347
    Liu B, Zhu C, Su J, et al (2018) Why was the western Pacific subtropical anticyclone weaker in late summer after the 2015/2016 super El Niño? Int J Climatol 38:55–65. https://doi.org/10.1002/joc.5160
    Liu Y, Cobb KM, Song H, et al (2017) Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms15386
    McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801
    McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science (80-. ). 314:1740–1745
    Melvin TM, Briffa KR (2008) A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia 26:71–86. https://doi.org/10.1016/j.dendro.2007.12.001
    Michael J. McPhaden, Agus Santoso, Cai W (2021) El Niño Southern Oscillation in a Changing Climate
    Mohtadi M, Prange M, Steinke S (2016) Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 533:191–199. https://doi.org/10.1038/nature17450
    Nakatsuka T, Sano M, Li Z, et al (2020) Reconstruction of multi-millennial summer climate variations in central Japan by integrating tree-ring cellulose oxygen and hydrogen isotope ratios. Clim Past Discuss 1–42. https://doi.org/10.5194/cp-2020-6
    Nitta T (1987) Convective activities in the tropical western pacific and their impact on the northern hemisphere summer circulation. J Meteorol Soc Japan 65:373–390. https://doi.org/10.2151/jmsj1965.65.3_373
    PAGES (2017) Past Global Changes (PAGES). GAIA - Ecol Perspect Sci Soc 2:93–95. https://doi.org/10.14512/gaia.2.2.6
    Park C-K, Schubert SD (1997) On the Nature of the 1994 East Asian Summer Drought. J Clim 10:1056–1070. https://doi.org/10.1175/1520-0442(1997)010<1056:OTNOTE>2.0.CO;2
    Peng Y, Shen C, Wang WC, Xu Y (2010) Response of summer precipitation over Eastern China to large volcanic eruptions. J Clim 23:818–824. https://doi.org/10.1175/2009JCLI2950.1
    Poussart PF, Schrag DP (2005) Seasonally resolved stable isotope chronologies from northern Thailand deciduous trees. Earth Planet Sci Lett 235:752–765
    Rasmusson EM, Wallace JM (1983) Meteorological Aspects of the El Ninfo / Southern Oscillation
    Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35. https://doi.org/10.1016/S0016-7037(99)00195-7
    Ronghui H, Yifang W (1989) The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci 6:21–32. https://doi.org/10.1007/BF02656915
    Sano M, Buckley BM, Sweda T (2009) Tree-ring based hydroclimate reconstruction over northern Vietnam from Fokienia hodginsii: eighteenth century mega-drought and tropical Pacific influence. Clim Dyn 33:331
    Sano M, Ramesh R, Sheshshayee M, Sukumar R (2012a) Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. Holocene 22:809–817. https://doi.org/10.1177/0959683611430338
    Sano M, Tshering P, Komori J, et al (2013) May-September precipitation in the Bhutan Himalaya since 1743 as reconstructed from tree ring cellulose δ18O. J Geophys Res Atmos 118:8399–8410. https://doi.org/10.1002/jgrd.50664
    Sano M, Xu C, Dimri AP, Ramesh R (2019) Summer monsoon variability in the himalaya over recent centuries. Himal Weather Clim their Impact Environ 261–280. https://doi.org/10.1007/978-3-030-29684-1_14
    Sano M, Xu C, Nakatsuka T (2012b) A 300-year Vietnam hydroclimate and ENSO variability record reconstructed from tree ring δ18O. J Geophys Res Atmos 117:1–12. https://doi.org/10.1029/2012JD017749
    Seo JW, Sano M, Jeong HM, et al (2019) Oxygen isotope ratios of subalpine conifers in Jirisan National Park, Korea and their dendroclimatic potential. Dendrochronologia 57:125626. https://doi.org/10.1016/j.dendro.2019.125626
    Shi F, Yang B, Mairesse A, et al (2013a) Northern Hemisphere temperature reconstruction during the last millennium using multiple annual proxies. Clim Res 56:231–244. https://doi.org/10.3354/cr01156
    Shi J, Cook ER, Li J, Lu H (2013b) Unprecedented January-July warming recorded in a 178-year tree-ring width chronology in the Dabie Mountains, southeastern China. Palaeogeogr Palaeoclimatol Palaeoecol 381–382:92–97. https://doi.org/10.1016/j.palaeo.2013.04.018
    Shi J, Cook ER, Lu H, et al (2010) Tree-ring based winter temperature reconstruction for the lower reaches of the yangtze river in southeast China. Clim Res 41:169–175. https://doi.org/10.3354/cr00851
    Shi J, Lu H, Li J, et al (2015) Tree-ring based February-April precipitation reconstruction for the lower reaches of the Yangtze River, southeastern China. Glob Planet Change 131:82–88. https://doi.org/10.1016/j.gloplacha.2015.05.006
    Shi S, Shi J, Xu C, et al (2020) Tree-ring δ18O from Southeast China reveals monsoon precipitation and ENSO variability. Palaeogeogr Palaeoclimatol Palaeoecol 558:109954. https://doi.org/10.1016/j.palaeo.2020.109954
    Stokes MA, Smiley TL (1996) An Introduction to Tree-Ring Dating. The University of Arizona Press, Tucson 1996
    Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon as seen through the divergent atmospheric circulation. J Clim 13:3969–3993. https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2
    Treydte KS, Schleser GH, Helle G, et al (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182. https://doi.org/10.1038/nature04743
    Tung YS, Wang S ‐Y. YS, Chu JL, et al (2020) Projected increase of the East Asian summer monsoon (Meiyu) in Taiwan by climate models with variable performance. Meteorol. Appl. 27
    Wang B (2006) The Asian Monsoon. Springer, Berlin
    Wang B, Lee JY, Xiang B (2015) Asian summer monsoon rainfall predictability: a predictable mode analysis. Clim Dyn 44:61–74. https://doi.org/10.1007/s00382-014-2218-1
    Wang B, Li J, He Q (2017) Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv Atmos Sci 34:1235–1248. https://doi.org/10.1007/s00376-017-7016-3
    Wang B, Liu J, Kim HJ, et al (2013) Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc Natl Acad Sci U S A 110:5347–5352. https://doi.org/10.1073/pnas.1219405110
    Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J Clim 13:1517–1536. https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    Wang B, Yang J, Zhou T, Wang B (2008) Interdecadal changes in the major modes of Asian-Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s. J Clim 21:1771–1789. https://doi.org/10.1175/2007JCLI1981.1
    Wang H (2001) The weakening of the Asian monsoon circulation after the end of 1970’s. Adv Atmos Sci 18:376–386. https://doi.org/10.1007/bf02919316
    Wang S-H (2013) Reconstruction of 232 Years Montane Climate of Taiwan from Stable Oxygen Isotope Ratios in Abies kawakamii Tree Ring (in Chinese with English Abstract). National Taiwan University
    Wang SY, Chen TC (2008) Measuring east Asian summer monsoon rainfall contributions by different weather systems over Taiwan. J Appl Meteorol Climatol 47:2068–2080. https://doi.org/10.1175/2007JAMC1821.1
    Wang Y, Wang B, Jai-Ho O (2001) Impact of preceding el-nino on east asia Summer atmosphere circulation. J. Meteorol. Soc. Japan 79:575–588
    Woodley EJ, Loader NJ, McCarroll D, et al (2012) Estimating uncertainty in pooled stable isotope time-series from tree-rings. Chem Geol 294–295:243–248. https://doi.org/10.1016/j.chemgeo.2011.12.008
    Worbes M, Junk WJ (1989) Dating Tropical Trees by Means of ^14C From Bomb Tests. Ecology 70:503–507. https://doi.org/10.2307/1937554
    Wright WE, Guan BT, Tseng YH, et al (2015) Reconstruction of the springtime East Asian Subtropical Jet and Western Pacific pattern from a millennial-length Taiwanese tree-ring chronology. Clim Dyn 44:1645–1659. https://doi.org/10.1007/s00382-014-2402-3
    Wu R (2002) A Contrast of the East Asian Summer Monsoon-ENSO Relationship between 1962-77 and 1978-93 *. American Meteorological Society
    Wu R, Hu ZZ, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16:3742–3758. https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2
    Wu Z, Wang B, Li J, Jin FF (2009) An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO. J Geophys Res Atmos 114:1–13. https://doi.org/10.1029/2009JD011733
    Xie A, Chung YS, Liu X, Ye Q (1998) The interannual variations of the summer monsoon onset over the South China Sea. Theor Appl Climatol 59:201–213. https://doi.org/10.1007/s007040050024
    Xie SP, Du Y, Huang G, et al (2010) Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s. J Clim 23:3352–3368. https://doi.org/10.1175/2010JCLI3429.1
    Xu C, An W, Wang SYS, et al (2019) Increased drought events in southwest China revealed by tree ring oxygen isotopes and potential role of Indian Ocean Dipole. Sci Total Environ 661:645–653. https://doi.org/10.1016/j.scitotenv.2019.01.186
    Xu C, Ge J, Nakatsuka T, et al (2016a) Potential utility of tree ring δ18O series for reconstructing precipitation records from the lower reaches of the Yangtze river, southeast China. J Geophys Res 121:3954–3968. https://doi.org/10.1002/2015JD023610
    Xu C, Pumijumnong N, Nakatsuka T, et al (2015) A tree-ring cellulose δ18O-based July-October precipitation reconstruction since AD 1828, northwest Thailand. J Hydrol 529:433–441. https://doi.org/10.1016/j.jhydrol.2015.02.037
    Xu C, Sano M, Nakatsuka T (2013a) A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring δ18O. Palaeogeogr Palaeoclimatol Palaeoecol 386:588–598. https://doi.org/10.1016/j.palaeo.2013.06.025
    Xu C, Sano M, Nakatsuka T (2011) Tree ring cellulose δ18O of Fokienia hodginsii in northern Laos: A promising proxy to reconstruct ENSO? J Geophys Res Atmos 116:1–12. https://doi.org/10.1029/2011JD016694
    Xu C, Zheng H, Nakatsuka T, et al (2016b) Inter- and intra-annual tree-ring cellulose oxygen isotope variability in response to precipitation in Southeast China. Trees - Struct Funct 30:785–794. https://doi.org/10.1007/s00468-015-1320-2
    Xu C, Zheng H, Nakatsuka T, Sano M (2013b) Oxygen isotope signatures preserved in tree ring cellulose as a proxy for April-September precipitation in Fujian, the subtropical region of southeast China. J Geophys Res Atmos 118:12,805-12,815. https://doi.org/10.1002/2013JD019803
    Yang J, Liu Q, Xie SP, et al (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:. https://doi.org/10.1029/2006GL028571
    Yihui D, Chan JCL (2005) The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 89:117–142
    Yu R, Wang B, Zhou T (2004) Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys Res Lett 31:1–4. https://doi.org/10.1029/2004GL021270
    Zheng XT, Xie SP, Liu Q (2011) Response of the Indian Ocean basin mode and its capacitor effect to global warming. J Clim 24:6146–6164. https://doi.org/10.1175/2011JCLI4169.1
    Zhisheng A, Guoxiong W, Jianping L, et al (2015) Global monsoon dynamics and climate change. Annu Rev Earth Planet Sci 43:29–77. https://doi.org/10.1146/annurev-earth-060313-054623
    Zhou T-JJ, Yu RC (2005) Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J Geophys Res 110:D08104. https://doi.org/10.1029/2004JD005413
    Zhou T, Yu R, Li H, Wang B (2008) Ocean forcing to changes in global monsoon precipitation over the recent half-century. J Clim 21:3833–3852. https://doi.org/10.1175/2008JCLI2067.1
    Zhou T, Yu R, Zhang J, et al (2009) Why the Western Pacific subtropical high has extended westward since the late 1970s. J Clim 22:2199–2215. https://doi.org/10.1175/2008JCLI2527.1
    Zhou W, Chan JCL (2007) ENSO and the South China Sea summer monsoon onset. Int J Climatol 27:157–167. https://doi.org/https://doi.org/10.1002/joc.1380
    Zhu M, Stott L, Buckley B, Yoshimura K (2012) 20th century seasonal moisture balance in Southeast Asian montane forests from tree cellulose δ18O. Clim Change 115:505–517
    Zong Y, Chen X (2000) The 1998 flood on the Yangtze, China. Nat Hazards 22:165–184. https://doi.org/10.1023/A:1008119805106

    References 2

    Anchukaitis KJ, Evans MN (2010) Tropical cloud forest climate variability and the demise of the Monteverde golden toad. Proc Natl Acad Sci 107:5036–5040. https://doi.org/10.1073/pnas.0908572107
    Anchukaitis KJ, Evans MN, Wheelwright NT, Schrag DP (2008) Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. J Geophys Res Biogeosciences 113:3030. https://doi.org/10.1029/2007JG000613
    Araguás-Araguás L, Froehlich K, Rozanski K (1998) Stable isotope composition of precipitation over southeast Asia. J Geophys Res Atmos 103:28721–28742. https://doi.org/10.1029/98JD02582
    Baker JCA, Hunt SFP, Clerici SJ, et al (2015) Oxygen isotopes in tree rings show good coherence between species and sites in Bolivia. Glob Planet Change 133:298–308. https://doi.org/10.1016/j.gloplacha.2015.09.008
    Bollasina MA, Messori G (2018) On the link between the subseasonal evolution of the North Atlantic Oscillation and East Asian climate. Clim Dyn 51:3537–3557. https://doi.org/10.1007/s00382-018-4095-5
    Bowen GJ, Cai Z, Fiorella RP, Putman AL (2019) Isotopes in the water cycle: Regional- to global-scale patterns and applications. Annu Rev Earth Planet Sci 47:453–479. https://doi.org/10.1146/annurev-earth-053018-060220
    Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39:1–13. https://doi.org/10.1029/2003WR002086
    Brienen RJW, Helle G, Pons TL, et al (2012) Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Nino-Southern Oscillation variability. Proc Natl Acad Sci 109:16957–16962. https://doi.org/10.1073/pnas.1205977109
    Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. https://doi.org/10.1016/j.dendro.2008.01.002
    Buras A (2017) A comment on the expressed population signal. Dendrochronologia
    Cai Q, Liu Y, Duan B, et al (2018a) Tree-ring δ18O, a tool to crack the paleo-hydroclimatic code in subtropical China. Quat Int 487:3–11. https://doi.org/10.1016/j.quaint.2017.10.038
    Cai W, Wu L, Lengaigne M, et al (2019) Pantropical climate interactions. Science (80- ) 363:. https://doi.org/10.1126/science.aav4236
    Cai Z, Tian L (2016) Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian Monsoon region. J Clim 29:1339–1352. https://doi.org/10.1175/JCLI-D-15-0363.1
    Cai Z, Tian L, Bowen GJ (2018b) Spatial-seasonal patterns reveal large-scale atmospheric controls on Asian Monsoon precipitation water isotope ratios. Earth Planet Sci Lett 503:158–169. https://doi.org/10.1016/j.epsl.2018.09.028
    Cai Z, Tian L, Bowen GJ (2017) ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region. Earth Planet Sci Lett 475:25–33. https://doi.org/10.1016/j.epsl.2017.06.035
    Chang C-PP, Zhang Y, Li T (2000a) Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I. J Clim 13:4326–4340. https://doi.org/10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2
    Chang CP, Zhang Y, Li T (2000b) Interannual and interdecadal variations of the East Asian summer monsoon and tropical pacific SSTs. Part II: Meridional structure of the monsoon. J Clim 13:4326–4340. https://doi.org/10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2
    Chang Y-S (2020) Using tree rings stable oxygen to reconstruct historical climates in Taijiang Inland Sea in Taiwan (in Chinese with English Abstract). National Cheng Kung Univeristy
    Chen C-S, Chen Y-L, Chen C-S, Chen Y-L (2003) The Rainfall Characteristics of Taiwan. Mon Weather Rev 131:1323–1341. https://doi.org/10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2
    Chen JM, Li T, Shih CF (2008) Asymmetry of the El Niño-spring rainfall relationship in Taiwan. J Meteorol Soc Japan 86:297–312. https://doi.org/10.2151/jmsj.86.297
    Chen S-H (2015) An attempt to reconstruct past climate variability for a montane cloud forest in Taiwan using tree ring stable oxygen isotope (in Chinese with English Abstract). National Cheng Kung University
    Chen X, Zhou T, Wu P, et al (2020) Emergent constraints on future projections of the western North Pacific Subtropical High. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-020-16631-9
    Choi W, Kim KY (2019) Summertime variability of the western North Pacific subtropical high and its synoptic influences on the East Asian weather. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-44414-w
    Cintra BBL, Gloor M, Boom A, et al (2021) Tree ‑ ring oxygen isotopes record a decrease in Amazon dry season rainfall over the past 40 years. Clim Dyn. https://doi.org/10.1007/s00382-021-06046-7
    Cook, Kairiukstis (1990) Methods of Dendrochronology: Applications in the Environmental Sciences
    Crawford J, Hughes CE, Parkes SD (2013) Is the isotopic composition of event based precipitation driven by moisture source or synoptic scale weather in the Sydney Basin, Australia? J Hydrol 507:213–226. https://doi.org/10.1016/j.jhydrol.2013.10.031
    Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. https://doi.org/10.3402/tellusa.v16i4.8993
    Evans MN, Schrag DP (2004) A stable isotope-based approach to tropical dendroclimatology. Geochim Cosmochim Acta 68:3295–3305
    Fritts HC (1976) Tree Rings and Climate. Academic Press
    Galewsky J, Steen-Larsen HC, Field RD, et al (2016) Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev Geophys 54:809–865. https://doi.org/10.1002/2015RG000512
    Gao J, Masson-Delmotte V, Risi C, et al (2013) What controls precipitation δ 18 O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus B Chem Phys Meteorol 65:21043. https://doi.org/10.3402/tellusb.v65i0.21043
    Hansen KG, Buckley BM, Zottoli B, et al (2017) Discrete seasonal hydroclimate reconstructions over northern Vietnam for the past three and a half centuries. Clim Change 145:177–188. https://doi.org/10.1007/s10584-017-2084-z
    Hau N-X, Sano M, Nakatsuka T, et al (2022) The Modulation of Pacific Decadal Oscillation on Enso-East Asian Summer Monsoon Precipitation Relationship Over the Past Half-Millennium. Sci Total Environ 857:159437. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.159437
    Ichiyanagi K, Yamanaka MD (2005) Interannual variation of stable isotopes in precipitation at Bangkok in response to El Ñino southern oscillation. Hydrol Process 19:3413–3423. https://doi.org/10.1002/hyp.5978
    Jiang Z, Chen GTJ, Wu MC (2003) Large-scale circulation patterns associated with heavy spring rain events over Taiwan in strong ENSO and Non-ENSO years. Mon Weather Rev 131:1769–1782. https://doi.org/10.1175//2561.1
    Kalnay E, Kanamitsu M, Kistler R, et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. Am Meteorol Soc. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    Kuo YC, Lee MA, Lu MM (2016) Association of Taiwan’s Rainfall Patterns with Large-Scale Oceanic and Atmospheric Phenomena. Adv Meteorol 2016:. https://doi.org/10.1155/2016/3102895
    Kurita N (2013) Water isotopic variability in response to mesoscale convective system over the tropical ocean. J Geophys Res Atmos 118:10,376-10,390. https://doi.org/10.1002/jgrd.50754
    Kurita N, Ichiyanagi K, Matsumoto J, et al (2009) The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J Geochemical Explor 102:113–122. https://doi.org/10.1016/j.gexplo.2009.03.002
    Leavitt SW (2010) Tree-ring C-H-O isotope variability and sampling. Sci Total Environ 408:5244–5253. https://doi.org/10.1016/j.scitotenv.2010.07.057
    Li HC, Zhao M, Tsai CH, et al (2015) The first high-resolution stalagmite record from Taiwan: Climate and environmental changes during the past 1300 years. J Asian Earth Sci 114:574–587. https://doi.org/10.1016/j.jseaes.2015.07.025
    Li T, Wang B, Wu B, et al (2017) Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteorol. Res. 31:987–1006
    Lin CC, Liou YJ, Huang SJ (2015) Impacts of Two-Type ENSO on Rainfall over Taiwan. Adv Meteorol 2015:. https://doi.org/10.1155/2015/658347
    Lin CT, Li CF, Zelený D, et al (2012) Classification of the High-Mountain Coniferous Forests in Taiwan. Folia Geobot 47:373–401. https://doi.org/10.1007/s12224-012-9128-y
    Liu J, Chen J, Zhang X, et al (2015) Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records. Earth-Science Rev 148:194–208. https://doi.org/10.1016/j.earscirev.2015.06.004
    Liu X, Zeng X, Leavitt SW, et al (2013) A 400-year tree-ring δ18O chronology for the southeastern Tibetan Plateau: Implications for inferring variations of the regional hydroclimate. Glob Planet Change 104:23–33. https://doi.org/10.1016/j.gloplacha.2013.02.005
    Liu Y, Cobb KM, Song H, et al (2017) Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms15386
    Liu Z, Wen X, Brady EC, et al (2014) Chinese cave records and the east asia summer monsoon. Quat Sci Rev 83:115–128. https://doi.org/10.1016/j.quascirev.2013.10.021
    Maher BA, Thompson R (2012) Oxygen isotopes from chinese caves: Records not of monsoon rainfall but of circulation regime. J Quat Sci 27:615–624. https://doi.org/10.1002/jqs.2553
    Man W, Zhou T, Jiang J, et al (2022) Moisture Sources and Climatic Controls of Precipitation Stable Isotopes Over the Tibetan Plateau in Water-Tagging Simulations. J Geophys Res Atmos 127:1–15. https://doi.org/10.1029/2021JD036321
    Masson-Delmotte V, Schulz M, Abe-Ouchi A, et al (2013) Information from Paleoclimate Archives. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor,. Cambridge Univ Press Cambridge, United Kingdom New York, NY, USA 18:21–24. https://doi.org/10.5169/seals-391143
    McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801
    McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science (80-. ). 314:1740–1745
    Michael J. McPhaden, Agus Santoso, Cai W (2021) El Niño Southern Oscillation in a Changing Climate
    Mohtadi M, Prange M, Steinke S (2016) Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 533:191–199. https://doi.org/10.1038/nature17450
    Nakatsuka T, Sano M, Li Z, et al (2020) Reconstruction of multi-millennial summer climate variations in central Japan by integrating tree-ring cellulose oxygen and hydrogen isotope ratios. Clim Past Discuss 1–42. https://doi.org/10.5194/cp-2020-6
    Pumijumnong N, Bräuning A, Sano M, et al (2020) A 338-year tree-ring oxygen isotope record from Thai teak captures the variations in the Asian summer monsoon system. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-66001-0
    R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing. In: Vienna, Austria. https://www.r-project.org/.
    Rayner NA, Parker DE, Horton EB, et al (2003) Global analyses of sea surface temperature , sea ice , and night marine air temperature since the late nineteenth century. 108:. https://doi.org/10.1029/2002JD002670
    Risi C, Bony S, Vimeux F (2008) Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J Geophys Res Atmos 113:1–12. https://doi.org/10.1029/2008JD009943
    Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35. https://doi.org/10.1016/S0016-7037(99)00195-7
    Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic Patterns in Modern Global Precipitation. 1–36. https://doi.org/10.1029/gm078p0001
    Ruan J, Zhang H, Cai Z, et al (2019) Regional controls on daily to interannual variations of precipitation isotope ratios in Southeast China: Implications for paleomonsoon reconstruction. Earth Planet Sci Lett 527:115794. https://doi.org/10.1016/j.epsl.2019.115794
    Sano M, Dimri AP, Ramesh R, et al (2017) Moisture source signals preserved in a 242-year tree-ring δ18O chronology in the western Himalaya. Glob Planet Change 157:73–82. https://doi.org/10.1016/j.gloplacha.2017.08.009
    Sano M, Ramesh R, Sheshshayee M, Sukumar R (2012a) Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. Holocene 22:809–817. https://doi.org/10.1177/0959683611430338
    Sano M, Tshering P, Komori J, et al (2013) May-September precipitation in the Bhutan Himalaya since 1743 as reconstructed from tree ring cellulose δ18O. J Geophys Res Atmos 118:8399–8410. https://doi.org/10.1002/jgrd.50664
    Sano M, Xu C, Nakatsuka T (2012b) A 300-year Vietnam hydroclimate and ENSO variability record reconstructed from tree ring δ18O. J Geophys Res Atmos 117:1–12. https://doi.org/10.1029/2012JD017749
    Schollaen K, Karamperidou C, Krusic P, et al (2015) ENSO flavors in a tree-ring δ18O record of Tectona grandis from Indonesia. Clim Past 11:. https://doi.org/10.5194/cp-11-1325-2015
    Schott FA, Xie SP, McCreary JP (2009) Indian ocean circulation and climate variability. Rev Geophys 47:1–46. https://doi.org/10.1029/2007RG000245
    Seo JW, Sano M, Jeong HM, et al (2019) Oxygen isotope ratios of subalpine conifers in Jirisan National Park, Korea and their dendroclimatic potential. Dendrochronologia 57:125626. https://doi.org/10.1016/j.dendro.2019.125626
    Shi J, Lu H, Li J, et al (2015) Tree-ring based February-April precipitation reconstruction for the lower reaches of the Yangtze River, southeastern China. Glob Planet Change 131:82–88. https://doi.org/10.1016/j.gloplacha.2015.05.006
    Shi S, Shi J, Xu C, et al (2020) Tree-ring δ18O from Southeast China reveals monsoon precipitation and ENSO variability. Palaeogeogr Palaeoclimatol Palaeoecol 558:109954. https://doi.org/10.1016/j.palaeo.2020.109954
    Siegwolf RTW, Brooks JR, Roden J, Saurer M (2022) Stable Isotopes in Tree Rings - Inferring Physiological, Climatic and Environmental Responses
    Stein AF, Draxler RR, Rolph GD, et al (2015) Noaa’s hysplit atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1
    Sun C, Liu Y, Li Q, et al (2021) Tree Rings Reveal the Impacts of the Northern Hemisphere Temperature on Precipitation Reduction in the Low Latitudes of East Asia Since 1259 CE. J Geophys Res Atmos 126:1–13. https://doi.org/10.1029/2020JD033603
    Tan L, Cai Y, Cheng H, et al (2018) Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years. Earth Planet Sci Lett 482:580–590. https://doi.org/10.1016/j.epsl.2017.11.044
    Tan M (2014) Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Clim Dyn 42:1067–1077. https://doi.org/10.1007/s00382-013-1732-x
    Thompson LG, Yao T, Mosley-Thompson E, et al (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science (80- ) 289:1916–1919. https://doi.org/10.1126/science.289.5486.1916
    Tian L, Yao T, Schuster PF, et al (2003) Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res Atmos 108:1–10. https://doi.org/10.1029/2002jd002173
    Treydte K, Frank D, Esper J, et al (2007) Signal strength and climate calibration of a European tree-ring isotope network. Geophys Res Lett 34:2–7. https://doi.org/10.1029/2007GL031106
    Treydte KS, Schleser GH, Helle G, et al (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182. https://doi.org/10.1038/nature04743
    Trouet V, Van Oldenborgh GJ (2013) KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Res 69:3–13. https://doi.org/10.3959/1536-1098-69.1.3
    van der Sleen P, Zuidema PA, Pons TL (2017) Stable isotopes in tropical tree rings: theory, methods and applications. Funct Ecol 31:1674–1689. https://doi.org/10.1111/1365-2435.12889
    Villacís M, Vimeux F, Taupin JD (2008) Analysis of the climate controls on the isotopic composition of precipitation (δ18O) at Nuevo Rocafuerte, 74.5°W, 0.9°S, 250 m, Ecuador. Comptes Rendus - Geosci 340:1–9. https://doi.org/10.1016/j.crte.2007.11.003
    Vuille M, Werner M, Bradley RS, Keimig F (2005) Stable isotopes in precipitation in the Asian monsoon region. J Geophys Res 110:D23108. https://doi.org/10.1029/2005JD006022
    Wang B, Lee JY, Xiang B (2015) Asian summer monsoon rainfall predictability: a predictable mode analysis. Clim Dyn 44:61–74. https://doi.org/10.1007/s00382-014-2218-1
    Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J Clim 13:1517–1536. https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    Wang B, Wu Z, Li J, et al (2008) How to measure the strenght of the East Asian summer monsoon. J Clim 21:4449–4463. https://doi.org/10.1175/2008JCLI2183.1
    Wang C (2019) Three-ocean interactions and climate variability: a review and perspective. Clim Dyn 53:5119–5136. https://doi.org/10.1007/s00382-019-04930-x
    Wang LC, Behling H, Chen YM, et al (2014a) Holocene monsoonal climate changes tracked by multiproxy approach from a lacustrine sediment core of the subalpine Retreat Lake in Taiwan. Quat Int 333:69–76. https://doi.org/10.1016/j.quaint.2014.02.014
    Wang S-H (2013) Reconstruction of 232 Years Montane Climate of Taiwan from Stable Oxygen Isotope Ratios in Abies kawakamii Tree Ring (in Chinese with English Abstract). National Taiwan University
    Wang S, Huang J, He Y, Guan Y (2014b) Combined effects of the Pacific Decadal Oscillation and El Niño-Southern Oscillation on Global Land Dry-Wet Changes. Sci Rep 4:1–8. https://doi.org/10.1038/srep06651
    Wang SY, Chen TC (2008) Measuring east Asian summer monsoon rainfall contributions by different weather systems over Taiwan. J Appl Meteorol Climatol 47:2068–2080. https://doi.org/10.1175/2007JAMC1821.1
    Wang W, Zeng X, Liu X, et al (2022) Temporal evolution of the influence of atmospheric circulation on regional cloud cover as revealed by tree-ring δ18O in southwestern China. Glob Planet Change 208:103690. https://doi.org/10.1016/j.gloplacha.2021.103690
    Weng S-P, Yang C-T (2015) The Construction of Monthly Rainfall and Temperature Datasets with 1km Gridded Resolution over Taiwan Area (1960-2009) and Its Application to Climate Projection in the Near Future (2015-2039). Atmos Sci 40:349–370
    Wigley TML, K. R. Briffa;, Jones PD (1984) On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
    Wu Z, Wang B, Li J, Jin FF (2009) An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO. J Geophys Res Atmos 114:1–13. https://doi.org/10.1029/2009JD011733
    Xiang B, Wang B, Yu W, Xu S (2013) How can anomalous western North Pacific Subtropical High intensify in late summer? Geophys Res Lett 40:2349–2354. https://doi.org/10.1002/grl.50431
    Xie SP, Kosaka Y, Du Y, et al (2016) Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv Atmos Sci 33:411–432. https://doi.org/10.1007/s00376-015-5192-6
    Xu C, Ge J, Nakatsuka T, et al (2016a) Potential utility of tree ring δ18O series for reconstructing precipitation records from the lower reaches of the Yangtze river, southeast China. J Geophys Res 121:3954–3968. https://doi.org/10.1002/2015JD023610
    Xu C, Pumijumnong N, Nakatsuka T, et al (2015) A tree-ring cellulose δ18O-based July-October precipitation reconstruction since AD 1828, northwest Thailand. J Hydrol 529:433–441. https://doi.org/10.1016/j.jhydrol.2015.02.037
    Xu C, Sano M, Nakatsuka T (2013a) A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring δ18O. Palaeogeogr Palaeoclimatol Palaeoecol 386:588–598. https://doi.org/10.1016/j.palaeo.2013.06.025
    Xu C, Shi J, Zhao Y, et al (2019) Early summer precipitation in the lower Yangtze River basin for AD 1845–2011 based on tree-ring cellulose oxygen isotopes. Clim Dyn 52:1583–1594. https://doi.org/10.1007/s00382-018-4212-5
    Xu C, Zheng H, Nakatsuka T, et al (2016b) Inter- and intra-annual tree-ring cellulose oxygen isotope variability in response to precipitation in Southeast China. Trees - Struct Funct 30:785–794. https://doi.org/10.1007/s00468-015-1320-2
    Xu C, Zheng H, Nakatsuka T, Sano M (2013b) Oxygen isotope signatures preserved in tree ring cellulose as a proxy for April-September precipitation in Fujian, the subtropical region of southeast China. J Geophys Res Atmos 118:12,805-12,815. https://doi.org/10.1002/2013JD019803
    Yang H, Johnson KR, Griffiths ML, Yoshimura K (2016) Interannual controls on oxygen isotope variability in Asian monsoon precipitation and implications for paleoclimate reconstructions. J Geophys Res Atmos 121:4211–4232. https://doi.org/10.1002/2015JD024358.Received
    Yihui D, Chan JCL (2005) The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 89:117–142
    Zang C, Biondi F (2015) treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography (Cop) 38:431–436. https://doi.org/10.1111/ecog.01335
    Zhang P, Cheng H, Edwards RL, et al (2008) A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science (80- ) 322:940–942. https://doi.org/10.1126/science.1163965
    Zhou H, Zhang X, Yao T, et al (2019) Variation of δ 18 O in precipitation and its response to upstream atmospheric convection and rainout: A case study of Changsha station, south-central China. Sci Total Environ 659:1199–1208. https://doi.org/10.1016/j.scitotenv.2018.12.396
    Zhou W, Chan JCL (2007) ENSO and the South China Sea summer monsoon onset. Int J Climatol 27:157–167. https://doi.org/https://doi.org/10.1002/joc.1380
    Zhu M, Stott L, Buckley B, Yoshimura K (2012) 20th century seasonal moisture balance in Southeast Asian montane forests from tree cellulose δ18O. Clim Change 115:505–517

    References 3
    Brienen RJW, Helle G, Pons TL, et al (2012) Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Nino-Southern Oscillation variability. Proc Natl Acad Sci 109:16957–16962. https://doi.org/10.1073/pnas.1205977109
    Buckley BM, Anchukaitis KJ, Penny D, et al (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci 107:6748–6752. https://doi.org/10.1073/pnas.0910827107
    Buckley BM, Ummenhofer CC, D’Arrigo RD, et al (2019) Interdecadal Pacific Oscillation reconstructed from trans-Pacific tree rings: 1350–2004 CE. Clim Dyn 53:3181–3196. https://doi.org/10.1007/s00382-019-04694-4
    Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. https://doi.org/10.1016/j.dendro.2008.01.002
    Bunn AG (2010) Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28:251–258. https://doi.org/10.1016/j.dendro.2009.12.001
    Chang Y-S (2020) Using tree rings stable oxygen to reconstruct historical climates in Taijiang Inland Sea in Taiwan (in Chinese with English Abstract). National Cheng Kung Univeristy
    Chen, Han-lin & Chang J-C (2007) The Discharge and Sediment Load of Heavy Rainfall Events in the Tsengwen River Basin (Chinese with English abstract). J Geogr Sci 48:43–65
    Chen C-S, Chen Y-L, Chen C-S, Chen Y-L (2003) The Rainfall Characteristics of Taiwan. Mon Weather Rev 131:1323–1341. https://doi.org/10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2
    Chen JM, Li T, Shih CF (2008) Asymmetry of the El Niño-spring rainfall relationship in Taiwan. J Meteorol Soc Japan 86:297–312. https://doi.org/10.2151/jmsj.86.297
    Chen S-H (2015) An attempt to reconstruct past climate variability for a montane cloud forest in Taiwan using tree ring stable oxygen isotope (in Chinese with English Abstract). National Cheng Kung University
    Chen SH, Wu JT, Yang TN, et al (2009) Late Holocene paleoenvironmental changes in subtropical Taiwan inferred from pollen and diatoms in lake sediments. J Paleolimnol 41:315–327. https://doi.org/10.1007/s10933-008-9227-1
    Cook ER, Anchukaitis KJ, Buckley BM, et al (2010) Asian Monsoon Failure and Megadrought During the Last Millennium. Science (80- ) 328:486–489. https://doi.org/10.1126/science.1185188
    Cook ER, Meko DM, Stahle DW, et al (1999) Drought Reconstructions for the Continental United States*. Am Meteorol Soc. https://doi.org/10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2
    Cook, Kairiukstis (1990) Methods of Dendrochronology: Applications in the Environmental Sciences
    Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. https://doi.org/10.3402/tellusa.v16i4.8993
    East AE, Sankey JB (2020) Geomorphic and Sedimentary Effects of Modern Climate Change: Current and Anticipated Future Conditions in the Western United States. Rev Geophys 58:. https://doi.org/10.1029/2019RG000692
    Fritts HC (1976) Tree Rings and Climate. Academic Press
    Han-Lin W-, Chen, Chang R-J (2010) The relationship between the terrestrial process and human activities in the Taijiang Inland Sea (Chinese). Geology 38–42
    Hau N-X, Sano M, Nakatsuka T, et al (2022) The Modulation of Pacific Decadal Oscillation on Enso-East Asian Summer Monsoon Precipitation Relationship Over the Past Half-Millennium. Sci Total Environ 857:159437. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.159437
    Henley BJ, Gergis J, Karoly DJ, et al (2015) A Tripole Index for the Interdecadal Pacific Oscillation. Clim Dyn 45:3077–3090. https://doi.org/10.1007/s00382-015-2525-1
    Hersbach H, Bell B, Berrisford P, et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803
    Hoegh-Guldberg O, Jacob D, Taylor M, et al (2018) Special Report on Global Warming of 1.5 °C - Chapter 3: Impacts of 1.5o C global warming on natural and human systems
    Hou H-S, Hsu T-W, Lin T-Y (2001) An Overview of Coastal Erosion along Taiwan Coast. Coast Eng 2000 3730–3741
    Hsu TW, Lin TY, Tseng IF (2007) Human impact on coastal erosion in Taiwan. J Coast Res 23:961–973. https://doi.org/10.2112/04-0353R.1
    Huang WR, Wang SYS, Guan BT (2018) Decadal fluctuations in the western Pacific recorded by long precipitation records in Taiwan. Clim Dyn 50:1597–1608. https://doi.org/10.1007/s00382-017-3707-9
    IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
    IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A
    IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp
    IPCC (2022) Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA
    Jiang Z, Chen GTJ, Wu MC (2003) Large-scale circulation patterns associated with heavy spring rain events over Taiwan in strong ENSO and Non-ENSO years. Mon Weather Rev 131:1769–1782. https://doi.org/10.1175//2561.1
    Jianshing W (2010) The History Vicissitudes of Taijiang Inner Sea And Its Surrounding Areas Before 1823 (Chinese with english abtract). National Cheng Kung University
    Kuo YC, Lee MA, Lu MM (2016) Association of Taiwan’s Rainfall Patterns with Large-Scale Oceanic and Atmospheric Phenomena. Adv Meteorol 2016:. https://doi.org/10.1155/2016/3102895
    Li HC, Zhao M, Tsai CH, et al (2015) The first high-resolution stalagmite record from Taiwan: Climate and environmental changes during the past 1300 years. J Asian Earth Sci 114:574–587. https://doi.org/10.1016/j.jseaes.2015.07.025
    Lin CC, Liou YJ, Huang SJ (2015) Impacts of Two-Type ENSO on Rainfall over Taiwan. Adv Meteorol 2015:. https://doi.org/10.1155/2015/658347
    Liu J, Chen J, Zhang X, et al (2015) Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records. Earth-Science Rev 148:194–208. https://doi.org/10.1016/j.earscirev.2015.06.004
    Liu Y, Cobb KM, Song H, et al (2017) Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms15386
    Liu Z, Wen X, Brady EC, et al (2014) Chinese cave records and the east asia summer monsoon. Quat Sci Rev 83:115–128. https://doi.org/10.1016/j.quascirev.2013.10.021
    Maher BA, Thompson R (2012) Oxygen isotopes from chinese caves: Records not of monsoon rainfall but of circulation regime. J Quat Sci 27:615–624. https://doi.org/10.1002/jqs.2553
    Mann ME, Lees JM (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Change 33:409–445. https://doi.org/10.1007/BF00142586
    Nakatsuka T, Sano M, Li Z, et al (2020) Reconstruction of multi-millennial summer climate variations in central Japan by integrating tree-ring cellulose oxygen and hydrogen isotope ratios. Clim Past Discuss 1–42. https://doi.org/10.5194/cp-2020-6
    Pao C-H, Uda T, Lin Y-H, et al (2018) Beach erosion on golden beach in south taiwan. Coast Eng Proc 2018:352. https://doi.org/10.9753/icce.v36.sediment.46
    Pederson N, Hessl AE, Baatarbileg N, et al (2014) Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc Natl Acad Sci U S A 111:4375–4379. https://doi.org/10.1073/pnas.1318677111
    Pumijumnong N, Bräuning A, Sano M, et al (2020) A 338-year tree-ring oxygen isotope record from Thai teak captures the variations in the Asian summer monsoon system. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-66001-0
    R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing. In: Vienna, Austria. https://www.r-project.org/.
    Sano M, Xu C, Dimri AP, Ramesh R (2019) Summer monsoon variability in the himalaya over recent centuries. Himal Weather Clim their Impact Environ 261–280. https://doi.org/10.1007/978-3-030-29684-1_14
    Sano M, Xu C, Nakatsuka T (2012) A 300-year Vietnam hydroclimate and ENSO variability record reconstructed from tree ring δ18O. J Geophys Res Atmos 117:1–12. https://doi.org/10.1029/2012JD017749
    Schneider U, Becker A, Finger P, et al (2018) GPCC Full Data Monthly Product Version 2018 at 0.25°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data. https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_025
    Selvaraj K, Arthur Chen CT, Lou JY, Kotlia BS (2011) Holocene weak summer East Asian monsoon intervals in Taiwan and plausible mechanisms. Quat Int 229:57–66. https://doi.org/10.1016/j.quaint.2010.01.015
    Shugar DH, Clague JJ, Best JL, et al (2017) River piracy and drainage basin reorganization led by climate-driven glacier retreat. Nat Geosci 10:370–375. https://doi.org/10.1038/ngeo2932
    Steven Crook (2020) Highways and Byways: Disappeared sea and a side trip to hell. In: www.taipeitimes.com. https://www.taipeitimes.com/News/feat/archives/2020/12/18/2003748919. Accessed 8 Dec 2022
    Sun C, Liu Y, Li Q, et al (2021) Tree Rings Reveal the Impacts of the Northern Hemisphere Temperature on Precipitation Reduction in the Low Latitudes of East Asia Since 1259 CE. J Geophys Res Atmos 126:1–13. https://doi.org/10.1029/2020JD033603
    Thompson LG, Yao T, Mosley-Thompson E, et al (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science (80- ) 289:1916–1919. https://doi.org/10.1126/science.289.5486.1916
    Torrence C, Compo GP (1998) A Practical Guide to Wavelet Analysis. Bull Am Meteorol Soc 79:61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    Treydte KS, Schleser GH, Helle G, et al (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182. https://doi.org/10.1038/nature04743
    Trouet V, Van Oldenborgh GJ (2013) KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Res 69:3–13. https://doi.org/10.3959/1536-1098-69.1.3
    Vuille M, Werner M, Bradley RS, Keimig F (2005) Stable isotopes in precipitation in the Asian monsoon region. J Geophys Res 110:D23108. https://doi.org/10.1029/2005JD006022
    Wang L-C, Behling H, Lee T-Q, et al (2014) Late Holocene environmental reconstructions and their implications on flood events, typhoon, and agricultural activities in NE Taiwan. Clim Past 10:1857–1869. https://doi.org/10.5194/cp-10-1857-2014
    Wang LC, Behling H, Lee TQ, et al (2013) Increased precipitation during the Little Ice Age in northern Taiwan inferred from diatoms and geochemistry in a sediment core from a subalpine lake. J Paleolimnol 49:619–631. https://doi.org/10.1007/s10933-013-9679-9
    Wang S-H (2013) Reconstruction of 232 Years Montane Climate of Taiwan from Stable Oxygen Isotope Ratios in Abies kawakamii Tree Ring (in Chinese with English Abstract). National Taiwan University
    Weiss H, Courty MA, Wetterstrom W, et al (1993) The genesis and collapse of third millennium north Mesopotamian civilization. Science (80- ) 261:995–1004. https://doi.org/10.1126/science.261.5124.995
    Wigley TML, K. R. Briffa;, Jones PD (1984) On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
    Xu C, Ge J, Nakatsuka T, et al (2016) Potential utility of tree ring δ18O series for reconstructing precipitation records from the lower reaches of the Yangtze river, southeast China. J Geophys Res 121:3954–3968. https://doi.org/10.1002/2015JD023610
    Xu C, Sano M, Nakatsuka T (2013) A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring δ18O. Palaeogeogr Palaeoclimatol Palaeoecol 386:588–598. https://doi.org/10.1016/j.palaeo.2013.06.025
    Yang H-C (2012) The Development and Change of Dao-feng Inland Sea Area (Chinese with English Abstract). National Tainan Univerisity
    Yang TN, Lee TQ, Lee MY, et al (2014) Paleohydrological changes in northeastern Taiwan over the past 2ky inferred from biological proxies in the sediment record of a floodplain lake. Palaeogeogr Palaeoclimatol Palaeoecol 410:401–411. https://doi.org/10.1016/j.palaeo.2014.06.018
    Zang C, Biondi F (2015) treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography (Cop) 38:431–436. https://doi.org/10.1111/ecog.01335

    References 4

    Beguería, S., Vicente-Serrano, S. M., & Angulo-Martínez, M. (2010). A multiscalar global drought dataset: The SPEI base: A new gridded product for the analysis of drought variability and impacts. Bulletin of the American Meteorological Society, 91(10), 1351–1356. https://doi.org/10.1175/2010BAMS2988.1
    Bunn, A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26(2), 115–124. https://doi.org/10.1016/j.dendro.2008.01.002
    Chan, J. C. L., & Zhou, W. (2005). PDO, ENSO and the early summer monsoon rainfall over south China. Geophysical Research Letters, 32(8), 1–5. https://doi.org/10.1029/2004GL022015
    Chang, C. P. (2004). East Asian Monsoon. World Scientific. https://books.google.com.tw/books?id=N8QYOdqGdgkC
    Chang, C. P., Zhang, Y., & Li, T. (2000). Interannual and interdecadal variations of the East Asian summer monsoon and tropical pacific SSTs. Part II: Meridional structure of the monsoon. Journal of Climate, 13(24), 4326–4340. https://doi.org/10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2
    Chen, C.-S., Chen, Y.-L., Chen, C.-S., & Chen, Y.-L. (2003). The Rainfall Characteristics of Taiwan. Monthly Weather Review, 131(7), 1323–1341. https://doi.org/10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2
    Chen, J. M., Li, T., & Shih, C. F. (2008). Asymmetry of the El Niño-spring rainfall relationship in Taiwan. Journal of the Meteorological Society of Japan, 86(2), 297–312. https://doi.org/10.2151/jmsj.86.297
    Chen, S.-H. (2015). An attempt to reconstruct past climate variability for a montane cloud forest in Taiwan using tree ring stable oxygen isotope (in Chinese with English Abstract). National Cheng Kung University.
    Cobb, K. M., Charles, C. D., Cheng, H., & Edwards, R. L. (2003). El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. In Nature (Vol. 424, Issue 6946, pp. 271–276). Nature Publishing Group. https://doi.org/10.1038/nature01779
    Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby, G. C., & Wright, W. E. (2010). Asian Monsoon Failure and Megadrought During the Last Millennium. Science, 328(5977), 486–489. https://doi.org/10.1126/science.1185188
    Cook, E.R., D’Arrigo, R. D., & Anchukaitis, K. J. (2008). NOAA/WDS Paleoclimatology - Cook et al. 2008 700 Year Tree-Ring ENSO Index Reconstructions - Datasets - NOAA Data Catalog. https://data.noaa.gov/dataset/dataset/noaa-wds-paleoclimatology-cook-et-al-2008-700-year-tree-ring-enso-index-reconstructions
    Cook, Edward R., Meko, D. M., Stahle, D. W., Cleaveland, M. K., Cook, E. R., Meko, D. M., Stahle, D. W., & Cleaveland, M. K. (1999). Drought Reconstructions for the Continental United States*. American Meteorological Society. https://doi.org/10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2
    Cook, & Kairiukstis. (1990). Methods of Dendrochronology: Applications in the Environmental Sciences. In Methods of Dendrochronology. https://doi.org/10.1007/978-94-015-7879-0
    D’Arrigo, R., & Wilson, R. (2006). On the Asian expression of the PDO. International Journal of Climatology, 26(12), 1607–1617. https://doi.org/10.1002/joc.1326
    Feng, J., Wang, L., & Chen, W. (2014). How does the east asian summer monsoon behave in the decaying phase of el niño during different PDO phases. Journal of Climate, 27(7), 2682–2698. https://doi.org/10.1175/JCLI-D-13-00015.1
    Fritts, H. C. (1976). Tree Rings and Climate. Academic Press. https://books.google.com.tw/books?id=cYYuAAAAIAAJ
    Gouhier;, T. C., Grinsted;, A., & Simko, V. (2018). R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses (Version 0.20.17). Available from https://github.com/tgouhier/biwavelet.
    Grissino-Mayer, H. D. (2001). Evaluating Crossdating Accuracy: A Manual and Tutorial for the Computer Program COFECHA. Tree-Ring Research. https://repository.arizona.edu/bitstream/10150/251654/1/trr-57-02-205-221.pdf
    Hansen, K. G., Buckley, B. M., Zottoli, B., D’Arrigo, R. D., Nam, L. C., Van Truong, V., Nguyen, D. T., & Nguyen, H. X. (2017). Discrete seasonal hydroclimate reconstructions over northern Vietnam for the past three and a half centuries. Climatic Change, 145(1–2), 177–188. https://doi.org/10.1007/s10584-017-2084-z
    Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology, 34(3), 623–642. https://doi.org/10.1002/joc.3711
    Harris, Ian, Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 1–18. https://doi.org/10.1038/s41597-020-0453-3
    Henley, B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., & Folland, C. K. (2015). A Tripole Index for the Interdecadal Pacific Oscillation. Climate Dynamics, 45(11–12), 3077–3090. https://doi.org/10.1007/s00382-015-2525-1
    Holmes, R. L. (1983). Computer-assisted quality control in tree- ring dating and measurement. Tree-Ring Bulletin, 43, 69–78. https://doi.org/10.1016/j.ecoleng.2008.01.004
    Hu, K., Huang, G., Zheng, X. T., Xie, S. P., Qu, X., Du, Y., & Liu, L. (2014). Interdecadal variations in ENSO influences on northwest Pacific-East Asian early summertime climate simulated in CMIP5 models. Journal of Climate, 27(15), 5982–5998. https://doi.org/10.1175/JCLI-D-13-00268.1
    Huang, G., Hu, K., & Xie, S. P. (2010). Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. Journal of Climate, 23(19), 5294–5304. https://doi.org/10.1175/2010JCLI3577.1
    Huang, R., Chen, J., & Huang, G. (2007). Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China. Advances in Atmospheric Sciences, 24(6), 993–1023. https://doi.org/10.1007/s00376-007-0993-x
    Huang, W. R., Wang, S. Y. S., & Guan, B. T. (2018). Decadal fluctuations in the western Pacific recorded by long precipitation records in Taiwan. Climate Dynamics, 50(5–6), 1597–1608. https://doi.org/10.1007/s00382-017-3707-9
    Jiang, Z., Chen, G. T. J., & Wu, M. C. (2003). Large-scale circulation patterns associated with heavy spring rain events over Taiwan in strong ENSO and Non-ENSO years. Monthly Weather Review, 131(8 PART 2), 1769–1782. https://doi.org/10.1175//2561.1
    Johnson, N. C., Amaya, D. J., Ding, Q., Kosaka, Y., Tokinaga, H., & Xie, S. P. (2020). Multidecadal modulations of key metrics of global climate change. Global and Planetary Change, 188(March), 103149. https://doi.org/10.1016/j.gloplacha.2020.103149
    Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., … Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. American Meteorological Society. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    Kennedy, J. J. (2014). A review of uncertainty in in situ measurements and data sets of sea surface temperature. American Geophysical Union, 52(1), 1–32. https://doi.org/10.1029/88EO01108
    Kuo, Y. C., Lee, M. A., & Lu, M. M. (2016). Association of Taiwan’s October rainfall patterns with large-scale oceanic and atmospheric phenomena. Atmospheric Research, 180, 200–210. https://doi.org/10.1016/j.atmosres.2016.05.012
    Li, Jianping, & Zeng, Q. (2002). A unified monsoon index. Geophysical Research Letters, 29(8), 1–4. https://doi.org/10.1029/2001GL013874
    Li, Jinbao, Xie, S. P., Cook, E. R., Huang, G., D’arrigo, R., Liu, F., Ma, J., & Zheng, X. T. (2011). Interdecadal modulation of El Niño amplitude during the past millennium. Nature Climate Change, 1(2), 114–118. https://doi.org/10.1038/nclimate1086
    Li, Jinbao, Xie, S. P., Cook, E. R., Morales, M. S., Christie, D. A., Johnson, N. C., Chen, F., D’Arrigo, R., Fowler, A. M., Gou, X., & Fang, K. (2013). El Niño modulations over the past seven centuries. Nature Climate Change, 3(9), 822–826. https://doi.org/10.1038/nclimate1936
    Li, S., Wu, L., Yang, Y., Geng, T., Cai, W., Gan, B., Chen, Z., Jing, Z., Wang, G., & Ma, X. (2020). The Pacific Decadal Oscillation less predictable under greenhouse warming. Nature Climate Change, 10(1), 30–34. https://doi.org/10.1038/s41558-019-0663-x
    Li, T., Wang, B., Wu, B., Zhou, T., Chang, C. P., & Zhang, R. (2017). Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. In Journal of Meteorological Research (Vol. 31, Issue 6, pp. 987–1006). Chinese Meteorological Society. https://doi.org/10.1007/s13351-017-7147-6
    Lin, C. C., Liou, Y. J., & Huang, S. J. (2015). Impacts of Two-Type ENSO on Rainfall over Taiwan. Advances in Meteorology, 2015. https://doi.org/10.1155/2015/658347
    Liu, B., Huang, G., Hu, K., Wu, R., Gong, H., Wang, P., & Zhao, G. (2018). The multidecadal variations of the interannual relationship between the East Asian summer monsoon and ENSO in a coupled model. Climate Dynamics, 51(5–6), 1671–1686. https://doi.org/10.1007/s00382-017-3976-3
    Liu, Y., Cobb, K. M., Song, H., Li, Q., Li, C. Y., Nakatsuka, T., An, Z., Zhou, W., Cai, Q., Li, J., Leavitt, S. W., Sun, C., Mei, R., Shen, C. C., Chan, M. H., Sun, J., Yan, L., Lei, Y., Ma, Y., … Linderholm, H. W. (2017). Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nature Communications, 8(May), 1–8. https://doi.org/10.1038/ncomms15386
    Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bulletin of the American Meteorological Society, 78(6), 1069–1079. https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
    McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an integrating concept in earth science. In Science (Vol. 314, Issue 5806, pp. 1740–1745). American Association for the Advancement of Science. https://doi.org/10.1126/science.1132588
    Mohtadi, M., Prange, M., & Steinke, S. (2016). Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature, 533(7602), 191–199. https://doi.org/10.1038/nature17450
    Nitta, T. (1987). Convective activities in the tropical western pacific and their impact on the northern hemisphere summer circulation. Journal of the Meteorological Society of Japan, 65(3), 373–390. https://doi.org/10.2151/jmsj1965.65.3_373
    Pumijumnong, N., Bräuning, A., Sano, M., Nakatsuka, T., Muangsong, C., & Buajan, S. (2020). A 338-year tree-ring oxygen isotope record from Thai teak captures the variations in the Asian summer monsoon system. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-66001-0
    R Core Team. (2018). R: A language and environment for statistical computing. 0. https://doi.org/ISBN 3-900051-07-0, URL http://www.R-project.org/
    Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V, Rowell, D. P., Kent, E. C., & Kaplan, A. (2003). Global analyses of sea surface temperature , sea ice , and night marine air temperature since the late nineteenth century. 108. https://doi.org/10.1029/2002JD002670
    Sakashita, W., Yokoyama, Y., Miyahara, H., Yamaguchi, Y. T., Aze, T., Obrochta, S. P., & Nakatsuka, T. (2015). Relationship between early summer precipitation in Japan and the El Niño-Southern and Pacific Decadal Oscillations over the past 400 years. Quaternary International, 397, 300–306. https://doi.org/10.1016/j.quaint.2015.05.054
    Sano, M., Ramesh, R., Sheshshayee, M., & Sukumar, R. (2012). Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. Holocene, 22(7), 809–817. https://doi.org/10.1177/0959683611430338
    Sano, M., Tshering, P., Komori, J., Fujita, K., Xu, C., & Nakatsuka, T. (2013). May-September precipitation in the Bhutan Himalaya since 1743 as reconstructed from tree ring cellulose δ18O. Journal of Geophysical Research Atmospheres, 118(15), 8399–8410. https://doi.org/10.1002/jgrd.50664
    Sano, M., Xu, C., & Nakatsuka, T. (2012). A 300-year Vietnam hydroclimate and ENSO variability record reconstructed from tree ring δ18O. Journal of Geophysical Research Atmospheres, 117(12), 1–12. https://doi.org/10.1029/2012JD017749
    Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., & Ziese, M. (2018). GPCC Full Data Monthly Product Version 2018 at 0.25°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data. https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_025
    Schollaen, K., Karamperidou, C., Krusic, P., Cook, E., & Helle, G. (2015). ENSO flavors in a tree-ring δ18O record of Tectona grandis from Indonesia. Climate of the Past, 11(10). https://doi.org/10.5194/cp-11-1325-2015
    Shen, C., Wang, W. C., Gong, W., & Hao, Z. (2006). A Pacific Decadal Oscillation record since 1470 AD reconstructed from proxy data of summer rainfall over eastern China. Geophysical Research Letters, 33(3), 1–4. https://doi.org/10.1029/2005GL024804
    Shi, S., Shi, J., Xu, C., Leavitt, S. W., Wright, W. E., Cai, Z., Zhang, H., Sun, X., Zhao, Y., Ma, X., Zhang, W., & Lu, H. (2020). Tree-ring δ18O from Southeast China reveals monsoon precipitation and ENSO variability. Palaeogeography, Palaeoclimatology, Palaeoecology, 558(February), 109954. https://doi.org/10.1016/j.palaeo.2020.109954
    Si, D., & Ding, Y. (2016). Oceanic forcings of the interdecadal variability in east Asian summer rainfall. Journal of Climate, 29(21), 7633–7649. https://doi.org/10.1175/JCLI-D-15-0792.1
    Song, F., & Zhou, T. (2014). Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean-western pacific anticyclone teleconnection. Journal of Climate, 27(4), 1679–1697. https://doi.org/10.1175/JCLI-D-13-00248.1
    Song, F., & Zhou, T. (2015). The crucial role of internal variability in modulating the decadal variation of the East Asian summer monsoon-ENSO relationship during the Twentieth Century. Journal of Climate, 28(18), 7093–7107. https://doi.org/10.1175/JCLI-D-14-00783.1
    Stokes, M. A., & Smiley, T. L. (1996). An Introduction to Tree-Ring Dating. The University of Arizona Press, Tucson 1996.
    Sun, W., Wang, B., Liu, J., & Dai, Y. (2022). Recent Changes of Pacific Decadal Variability Shaped by Greenhouse Forcing and Internal Variability. Journal of Geophysical Research: Atmospheres, 127(8). https://doi.org/10.1029/2021JD035812
    Trouet, V., & Van Oldenborgh, G. J. (2013). KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Research, 69(1), 3–13. https://doi.org/10.3959/1536-1098-69.1.3
    Tung, Y. S., Wang, S. ‐Y. Y. S., Chu, J. L., Wu, C. H., Chen, Y. M., Cheng, C. T., & Lin, L. Y. (2020). Projected increase of the East Asian summer monsoon (Meiyu) in Taiwan by climate models with variable performance. In Meteorological Applications (Vol. 27, Issue 1). John Wiley and Sons Ltd. https://doi.org/10.1002/met.1886
    Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
    Wang, B. (2006). The Asian Monsoon. Springer Berlin Heidelberg. https://books.google.com.tw/books?id=2xAl1ot7ihQC
    Wang, Bin, Lee, J. Y., & Xiang, B. (2015). Asian summer monsoon rainfall predictability: a predictable mode analysis. Climate Dynamics, 44(1–2), 61–74. https://doi.org/10.1007/s00382-014-2218-1
    Wang, Bin, Liu, J., Kim, H. J., Webster, P. J., Yim, S. Y., & Xiang, B. (2013). Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5347–5352. https://doi.org/10.1073/pnas.1219405110
    Wang, Bin, Luo, X., & Liu, J. (2020). How robust is the asian precipitation-ENSO relationship during the industrial warming period (1901-2017)? Journal of Climate, 33(7), 2779–2792. https://doi.org/10.1175/JCLI-D-19-0630.1
    Wang, Bin, Wu, R., & Fu, X. (2000). Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? Journal of Climate, 13(9), 1517–1536. https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    Wang, Bin, Wu, R., & Lau, K. M. (2001). Interannual variability of the asian summer monsoon: Contrasts between the Indian and the Western North Pacific-East Asian monsoons. Journal of Climate, 14(20), 4073–4090. https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2
    Wang, Bin, Wu, R., & Li, T. (2003). Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. Journal of Climate, 16(8), 1195–1211. https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2
    Wang, S. Y., & Chen, T. C. (2008). Measuring east Asian summer monsoon rainfall contributions by different weather systems over Taiwan. Journal of Applied Meteorology and Climatology, 47(7), 2068–2080. https://doi.org/10.1175/2007JAMC1821.1
    Wigley, T. M. L., K. R. Briffa;, & Jones, P. D. (1984). On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
    Wilson, R., Cook, E., D’Arrigo, R., Riedwyl, N., Evans, M. N., Tudhope, A., & Allan, R. (2010). Reconstructing ENSO: the influence of method, proxy data, climate forcing and teleconnections. Journal of Quaternary Science, 25(1), 62–78. https://doi.org/10.1002/jqs.1297
    Wu, R. (2002). A Contrast of the East Asian Summer Monsoon-ENSO Relationship between 1962-77 and 1978-93 *. In Journal of Climate (Vol. 15, Issue 22). American Meteorological Society. https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2
    Wu, Z., Wang, B., Li, J., & Jin, F. F. (2009). An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO. Journal of Geophysical Research Atmospheres, 114(18), 1–13. https://doi.org/10.1029/2009JD011733
    Xie, S. P., Du, Y., Huang, G., Zheng, X. T., Tokinaga, H., Hu, K., & Liu, Q. (2010). Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s. Journal of Climate, 23(12), 3352–3368. https://doi.org/10.1175/2010JCLI3429.1
    Xie, S. P., Hu, K., Hafner, J., Tokinaga, H., Du, Y., Huang, G., & Sampe, T. (2009). Indian Ocean capacitor effect on Indo-Western pacific climate during the summer following El Niño. Journal of Climate, 22(3), 730–747. https://doi.org/10.1175/2008JCLI2544.1
    Xu, C., Ge, J., Nakatsuka, T., Yi, L., Zheng, H., & Sano, M. (2016). Potential utility of tree ring δ18O series for reconstructing precipitation records from the lower reaches of the Yangtze river, southeast China. Journal of Geophysical Research, 121(8), 3954–3968. https://doi.org/10.1002/2015JD023610
    Xu, C., Pumijumnong, N., Nakatsuka, T., Sano, M., & Li, Z. (2015). A tree-ring cellulose δ18O-based July-October precipitation reconstruction since AD 1828, northwest Thailand. Journal of Hydrology, 529(P2), 433–441. https://doi.org/10.1016/j.jhydrol.2015.02.037
    Xu, C., Sano, M., & Nakatsuka, T. (2013). A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring δ18O. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 588–598. https://doi.org/10.1016/j.palaeo.2013.06.025
    Xu, C., Shi, J., Zhao, Y., Nakatsuka, T., Sano, M., Shi, S., & Guo, Z. (2019). Early summer precipitation in the lower Yangtze River basin for AD 1845–2011 based on tree-ring cellulose oxygen isotopes. Climate Dynamics, 52(3–4), 1583–1594. https://doi.org/10.1007/s00382-018-4212-5
    Xu, C., Zheng, H., Nakatsuka, T., & Sano, M. (2013). Oxygen isotope signatures preserved in tree ring cellulose as a proxy for April-September precipitation in Fujian, the subtropical region of southeast China. Journal of Geophysical Research Atmospheres, 118(23), 12,805-12,815. https://doi.org/10.1002/2013JD019803
    Yoon, J., & Yeh, S. W. (2010). Influence of the Pacific decadal oscillation on the relationship between El Niño and the northeast Asian summer monsoon. Journal of Climate, 23(17), 4525–4537. https://doi.org/10.1175/2010JCLI3352.1
    Yu, L., Furevik, T., Otterå, O. H., & Gao, Y. (2015). Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China: a comparison of observations to 600-years control run of Bergen Climate Model. Climate Dynamics, 44(1–2), 475–494. https://doi.org/10.1007/s00382-014-2141-5
    Zang, C., & Biondi, F. (2015). treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography, 38(4), 431–436. https://doi.org/10.1111/ecog.01335
    Zhang, R., Akimasa, S., & Masahide, K. (1999). A Diagnostic Study of the Impact of El Niño on the Precipitation in China. Advances in Atmospheric Sciences, 16(2), 229–241. https://doi.org/10.1007/BF02973084
    Zhao, G., Huang, G., Wu, R., Tao, W., Gong, H., Qu, X., & Hu, K. (2015). A new upper-level circulation index for the East Asian summer monsoon variability. Journal of Climate, 28(24), 9977–9996. https://doi.org/10.1175/JCLI-D-15-0272.1
    Zheng, X. T., Xie, S. P., & Liu, Q. (2011). Response of the Indian Ocean basin mode and its capacitor effect to global warming. Journal of Climate, 24(23), 6146–6164. https://doi.org/10.1175/2011JCLI4169.1
    Zhisheng, A., Guoxiong, W., Jianping, L., Youbin, S., Yimin, L., Weijian, Z., Yanjun, C., Anmin, D., Li, L., Jiangyu, M., Hai, C., Zhengguo, S., Liangcheng, T., Hong, Y., Hong, A., Hong, C., & Juan, F. (2015). Global monsoon dynamics and climate change. Annual Review of Earth and Planetary Sciences, 43, 29–77. https://doi.org/10.1146/annurev-earth-060313-054623
    Zhou, W., & Chan, J. C. L. (2007). ENSO and the South China Sea summer monsoon onset. International Journal of Climatology, 27(2), 157–167. https://doi.org/https://doi.org/10.1002/joc.1380
    Zhu, M., Stott, L., Buckley, B., & Yoshimura, K. (2012). 20th century seasonal moisture balance in Southeast Asian montane forests from tree cellulose δ18O. Climatic Change, 115(3–4), 505–517.

    無法下載圖示 校內:2027-12-21公開
    校外:2027-12-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE