| 研究生: |
王柏凱 Wang, Po-Kai |
|---|---|
| 論文名稱: |
砷與砷化銦在氯化膽鹼-乙二醇深共熔溶劑中的電化學行為 The Electrochemical Behaviors of Arsenic and Indium(III) Arsenide in Choline Chloride-Ethylene Glycol Deep Eutectic Solvent |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 深共熔溶劑 、電沉積 、砷 、砷化銦 |
| 外文關鍵詞: | Deep eutectic solvent, Electrodeposition, Arsenic, Indium arsenide |
| 相關次數: | 點閱:101 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文以1:2的比例混合氯化膽鹼(choline chloride, ChCl)與乙二醇(ethylene glycol, EG)合成深共熔溶劑(deep eutectic solvent, DES),並且藉由電化學的方法探討砷與銦在此溶劑中的電化學行為,接著進一步地電沉積砷以及砷化銦在金屬基材上。
本實驗主要可分成二部分。第一部分是只含As2O3的溶液,分別透過循環伏安法(CV)、旋轉電極伏安法(RDE)、成核實驗等方式探討As(III)在1:2 ChCl-EG中的氧化還原反應、擴散係數、成核機制等電化學行為。接著使用定電位法、定電流法、脈衝電位法,調整電位、電流、時間、電量、溫度等實驗條件嘗試將砷電沉積在銅片上,並且透過掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDS)、X射線繞射分析儀(XRD)等設備來觀察、比較不同實驗條件下所得的鍍層形貌與元素分布。
第二部分則是在溶液中添加As2O3與InCl3,藉由改變濃度配置、折返電位的方式觀察CV圖的變化來探討As(III)與In(III)在此溶劑中的電化學行為。接著同樣以定電位的方法,調整濃度配置、電位、基材等實驗條件嘗試電沉積InAs合金,並且找出在何種條件下可以得到具有晶相的InAs。
實驗的結果顯示在DES中電沉積砷是可行的。使用DES不僅可以避免水溶液的產氫反應,且不會有AsH3毒性氣體的產生,而DES同時也是更環保的溶劑。第二部分的實驗成功電沉積具晶相的InAs合金半導體,也擴展了此方法的應用性。
The electrochemical behavior of arsenic(III) is investigated in the ethaline deep eutectic solvent (DES) that is obtained by mixing 1 mol eq. of choline chloride and 2 mol eq. of ethylene glycol using As2O3 as the As(III) source. Cyclic voltammetry and rotating disc voltammetry experivments indicate that the reduction of As(III) to As is a single step three electron transfer process with slow kinetics. The result of nucleation experiment shows that the nucleation/growth process of As on glassy carbon electrode is three-dimentional instantaneous. Amorphous arsenic coatings are obtained with constant potential, constant current, and pulse potential electrolysis methods.
When the arsenic(III) and indium(III) coexist in 1:2 ChCl-EG, cyclic voltammetry shows that As shields the redox of indium. Single-step electrodeposition of InAs was conducted with constant potential, and the deposits were characterized by scanning electro microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). Crystalline InAs alloy film on Cu or Ni substrate can be obtained when the deposit composition of As and In is about 1:1.
1. A. Stark and K. R. Seddon, Kirk-Othmer Encyclopaedia of Chemical Technology, 2007, 26, 836-920.
2. P. Walden, Bull. Acad. Impe´r. Sci. St. Pe´tersbourg,, 1914, 8, 405-422.
3. F. H. Hurley and T. P. Wier, J. Electrochem. Soc., 1951, 98, 207-212.
4. R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi and C. L. Hussey, J. Electrochem. Soc., 1979, 126, 1644-1650.
5. J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorg. Chem., 1982, 21, 1263-1264.
6. J. S. Wilkes and M. J. Zaworotko, Journal of the Chemical Society-Chemical Communications, 1992, DOI: 10.1039/c39920000965, 965-967.
7. P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Gratzel, Inorg. Chem., 1996, 35, 1168-1178.
8. P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. DeSouza and J. Dupont, Polyhedron, 1996, 15, 1217-1219.
9. T. Torimoto, T. Tsuda, K. Okazaki and S. Kuwabata, Adv. Mater., 2010, 22, 1196-1221.
10. K. R. Seddon, A. Stark and M. J. Torres, Pure Appl. Chem., 2000, 72, 2275-2287.
11. A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed and V. Tambyrajah, Chem. Commun., 2001, DOI: 10.1039/b106357j, 2010-2011.
12. S. I. Hsiu, J. F. Huang, I. W. Sun, C. H. Yuan and J. Shiea, Electrochim. Acta, 2002, 47, 4367-4372.
13. Y. F. Lin and I. W. Sun, Electrochim. Acta, 1999, 44, 2771-2777.
14. A. P. Abbott, G. Capper, D. L. Davies and R. Rasheed, Inorg. Chem., 2004, 43, 3447-3452.
15. W. G. Xu, X. M. Lu, Q. G. Zhang, J. S. Gui and J. Z. Yang, Chin. J. Chem . 2006, 24, 331-335.
16. J. Z. Yang, P. Tian, L. L. He and W. G. Xu, Fluid Phase Equilib., 2003, 204, 295-302.
17. A. P. Abbott, G. Capper, D. L. Davies and R. K. Rasheed, Chemistry-a European Journal, 2004, 10, 3769-3774.
18. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and V. Tambyrajah, Chem. Commun., 2003, DOI: 10.1039/b210714g, 70-71.
19. A. P. Abbott, D. Boothby, G. Capper, D. L. Davies and R. K. Rasheed, J. Am. Chem. Soc., 2004, 126, 9142-9147.
20. A. P. Abbott, G. Capper, B. G. Swain and D. A. Wheeler, Transactions of the Institute of Metal Finishing, 2005, 83, 51-53.
21. T. Scheffler and M. Thomson, Seventh International Conference on Molten Salts, The Electrochemical Society Montreal, Quebec, Canada, 1990.
22. E. L. Smith, A. P. Abbott and K. S. Ryder, Chem. Rev., 2014, 114, 11060-11082.
23. A. P. Abbott, G. Capper, D. L. Davies, K. J. McKenzie and S. U. Obi, J. Chem. Eng. Data, 2006, 51, 1280-1282.
24. A. P. Abbott, P. M. Cullis, M. J. Gibson, R. C. Harris and E. Raven, Green Chemistry, 2007, 9, 868-872.
25. A. P. Abbott, T. J. Bell, S. Handa and B. Stoddart, Green Chemistry, 2006, 8, 784-786.
26. A. P. Abbott, J. C. Barron, K. S. Ryder and D. Wilson, Chemistry-a European Journal, 2007, 13, 6495-6501.
27. A. A. Fannin, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes and J. L. Williams, J. Phys. Chem., 1984, 88, 2614-2621.
28. M. S. Sitze, E. R. Schreiter, E. V. Patterson and R. G. Freeman, Inorg. Chem., 2001, 40, 2298-2304.
29. H. Z. Yang, Y. Jin, W. G. Xu, Q. G. Zhang and S. L. Zang, Fluid Phase Equilib., 2005, 227, 41-46.
30. A. P. Abbott, J. C. Barron, G. Frisch, K. S. Ryder and A. F. Silva, Electrochim. Acta, 2011, 56, 5272-5279.
31. A. P. Abbott, J. C. Barron and K. S. Ryder, Transactions of the Institute of Metal Finishing, 2009, 87, 201-207.
32. A. P. Abbott and K. J. McKenzie, PCCP, 2006, 8, 4265-4279.
33. A. P. Abbott, K. El Ttaib, G. Frisch, K. J. McKenzie and K. S. Ryder, PCCP, 2009, 11, 4269-4277.
34. A. M. Popescu, A. Cojocaru, C. Donath and V. Constantin, Chemical Research in Chinese Universities, 2013, 29, 991-997.
35. A. P. Abbott, K. El Ttaib, K. S. Ryder and E. L. Smith, Transactions of the Institute of Metal Finishing, 2008, 86, 234-240.
36. A. P. Abbott, K. El Ttaib, G. Frisch, K. S. Ryder and D. Weston, PCCP, 2012, 14, 2443-2449.
37. H. M. A. Abood, A. P. Abbott, A. D. Ballantyne and K. S. Ryder, Chem. Commun., 2011, 47, 3523-3525.
38. E. Gomez, P. Cojocaru, L. Magagnin and E. Valles, J. Electroanal. Chem., 2011, 658, 18-24.
39. A. M. J. Popescu, V. Constantin, M. Olteanu, O. Demidenko and K. Yanushkevich, Rev. Chim., 2011, 62, 626-632.
40. B. G. Pollet, J. Y. Hihn and T. J. Mason, Electrochim. Acta, 2008, 53, 4248-4256.
41. D. Lloyd, T. Vainikka, L. Murtomaki, K. Kontturi and E. Ahlberg, Electrochim. Acta, 2011, 56, 4942-4948.
42. E. S. C. Ferreira, C. M. Pereira and A. F. Silva, J. Electroanal. Chem., 2013, 707, 52-58.
43. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, J. Archer and C. John, Transactions of the Institute of Metal Finishing, 2004, 82, 14-17.
44. H. Y. Yang, X. W. Guo, N. Birbilis, G. H. Wu and W. J. Ding, Appl. Surf. Sci., 2011, 257, 9094-9102.
45. C. D. Gu and J. P. Tu, Rsc Advances, 2011, 1, 1220-1227.
46. C. D. Gu and J. P. Tu, Langmuir, 2011, 27, 10132-10140.
47. E. L. Smith, J. C. Barron, A. P. Abbott and K. S. Ryder, Anal. Chem., 2009, 81, 8466-8471.
48. P. Sebastian, E. Valles and E. Gomez, Electrochim. Acta, 2013, 112, 149-158.
49. A. P. Abbott, M. Azam, K. S. Ryder and S. Saleem, Anal. Chem., 2013, 85, 6653-6660.
50. A. P. Abbott, M. Azam, G. Frisch, J. Hartley, K. S. Ryder and S. Saleem, PCCP, 2013, 15, 17314-17323.
51. H. Y. Wang, Y. Z. Jia, X. H. Wang, Y. Yao, D. Y. Yue and Y. Jing, Electrochim. Acta, 2013, 108, 384-389.
52. M. Bougouma, A. Van Elewyck, M. Steichen, C. Buess-Herman and T. Doneux, J. Solid State Electrochem., 2013, 17, 527-536.
53. G. Lanzinger, R. Bock, R. Freudenberger, T. Mehner, I. Scharf and T. Lampke, Transactions of the Institute of Metal Finishing, 2013, 91, 133-140.
54. R. Bock, G. Lanzinger, R. Freudenberger, T. Mehner, D. Nickel, I. Scharf and T. Lampke, J. Appl. Electrochem., 2013, 43, 1207-1216.
55. P. De Vreese, A. Skoczylas, E. Matthijs, J. Fransaer and K. Binnemans, Electrochim. Acta, 2013, 108, 788-794.
56. P. P. Chung, P. A. Cantwell, G. D. Wilcox and G. W. Critchlow, Transactions of the Institute of Metal Finishing, 2008, 86, 211-219.
57. P. Cojocaru, L. Magagnin, E. Gomez and E. Valles, Mater. Lett., 2011, 65, 3597-3600.
58. M. Steichen, M. Thomassey, S. Siebentritt and P. J. Dale, PCCP, 2011, 13, 4292-4302.
59. H. Y. Yang, X. W. Guo, X. B. Chen, S. H. Wang, G. H. Wu, W. J. Ding and N. Birbilis, Electrochim. Acta, 2012, 63, 131-138.
60. G. Saravanan and S. Mohan, International Journal of Electrochemical Science, 2011, 6, 1468-1478.
61. J. C. Malaquias, M. Steichen, M. Thomassey and P. J. Dale, Electrochim. Acta, 2013, 103, 15-22.
62. J. Vijayakumar, S. Mohan, S. A. Kumar, S. R. Suseendiran and S. Pavithra, Int. J. Hydrogen Energy, 2013, 38, 10208-10214.
63. A. P. Abbott, G. Capper, K. J. McKenzie and K. S. Ryder, Electrochim. Acta, 2006, 51, 4420-4425.
64. A. P. Abbott, N. Dsouza, P. Withey and K. S. Ryder, Transactions of the Institute of Metal Finishing, 2012, 90, 9-14.
65. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and P. Shikotra, Inorg. Chem., 2005, 44, 6497-6499.
66. A. P. Abbott, G. Capper, D. L. Davies and P. Shikotra, Mineral Processing and Extractive Metallurgy, 2006, 115, 15-18.
67. Y. S. Liao, P. Y. Chen and I. W. Sun, Electrochim. Acta, 2016, 214, 265-275.
68. E. R. Parnham, E. A. Drylie, P. S. Wheatley, A. M. Z. Slawin and R. E. Morris, Angewandte Chemie-International Edition, 2006, 45, 4962-4966.
69. Z. J. Lin, D. S. Wragg, P. Lightfoot and R. E. Morris, Dalton Transactions, 2009, DOI: 10.1039/b904450g, 5287-5289.
70. F. Himeur, I. Stein, D. S. Wragg, A. M. Z. Slawin, P. Lightfoot and R. E. Morris, Solid State Sciences, 2010, 12, 418-421.
71. E. R. Cooper, C. D. Andrews, P. S. Wheatley, P. B. Webb, P. Wormald and R. E. Morris, Nature, 2004, 430, 1012-1016.
72. A. L. Zhu, T. Jiang, B. X. Han, J. C. Zhang, Y. Xie and X. M. Ma, Green Chemistry, 2007, 9, 169-172.
73. J. Zhang, T. Wu, S. M. Chen, P. Y. Feng and X. H. Bu, Angewandte Chemie-International Edition, 2009, 48, 3486-3490.
74. D. Z. Yang, M. Q. Hou, H. Ning, J. L. Zhang, J. Ma, G. Y. Yang and B. X. Han, Green Chemistry, 2013, 15, 2261-2265.
75. W. C. Su, D. S. H. Wong and M. H. Li, J. Chem. Eng. Data, 2009, 54, 1951-1955.
76. X. Y. Li, M. Q. Hou, B. X. Han, X. L. Wang and L. Z. Zou, J. Chem. Eng. Data, 2008, 53, 548-550.
77. S. M. Chen, J. Zhang, T. Wu, P. Y. Feng and X. H. Bu, J. Am. Chem. Soc., 2009, 131, 16027-+.
78. M. C. Gutierrez, M. L. Ferrer, L. Yuste, F. Rojo and F. del Monte, Angewandte Chemie-International Edition, 2010, 49, 2158-2162.
79. J. T. Gorke, F. Srienc and R. J. Kazlauskas, Chem. Commun., 2008, DOI: 10.1039/b716317g, 1235-1237.
80. J. Gorke, F. Srienc and R. Kazlauskas, Biotechnology and Bioprocess Engineering, 2010, 15, 40-53.
81. P. D. de Maria and Z. Maugeri, Curr. Opin. Chem. Biol., 2011, 15, 220-225.
82. H. Zhao and G. A. Baker, J. Chem. Technol. Biotechnol., 2013, 88, 3-12.
83. K. Shahbaz, F. S. Mjalli, M. A. Hashim and I. M. AlNashef, Sep. Sci. Technol., 2013, 48, 1184-1193.
84. L. Wei, Z. Y. Zhou, S. P. Chen, C. D. Xu, D. S. Su, M. E. Schuster and S. G. Sun, Chem. Commun., 2013, 49, 11152-11154.
85. L. Wei, Y. J. Fan, N. Tian, Z. Y. Zhou, X. Q. Zhao, B. W. Mao and S. G. Sun, Journal of Physical Chemistry C, 2012, 116, 2040-2044.
86. Y. Huang, F. Shen, J. La, G. X. Luo, J. L. Lai, C. S. Liu and G. Chu, Particulate Science and Technology, 2013, 31, 81-84.
87. J. A. Hammons, T. Muselle, J. Ustarroz, M. Tzedaki, M. Rats, A. Hubin and H. Terryn, Journal of Physical Chemistry C, 2013, 117, 14381-14389.
88. F. X. Chen, S. L. Xie, J. H. Zhang and R. Liu, Mater. Lett., 2013, 112, 177-179.
89. G. Wranglen, J. Electrochem. Soc., 1961, 108, 1069-1070.
90. I. A. Menzies and L. W. OWEN, Electrochim. Acta, 1966, 11, 251-265.
91. H. Z. Cao, H. P. Shan, H. M. Ruan and G. Q. Zheng, Electrochem. Commun., 2012, 23, 44-47.
92. M. M. Musiani, F. Paolucci and P. Guerriero, J. Electroanal. Chem., 1992, 332, 113-126.
93. M. C. Yang, U. Landau and J. C. Angus, J. Electrochem. Soc., 1992, 139, 3480-3488.
94. G. Mengoli, M. M. Musiani and F. Paolucci, J. Electroanal. Chem., 1992, 332, 199-211.
95. A. P. Abbott, R. C. Harris, F. Holyoak, G. Frisch, J. Hartley and G. R. T. Jenkin, Green Chemistry, 2015, 17, 2172-2179.
96. Z. Ahmad, K. S. Karimov, F. Touati, M. S. Ajmal, T. Ali, S. H. Kayani, K. Kabutov, R. A. Shakoor and N. J. Al-Thani, J. Electroanal. Chem., 2016, 775, 267-272.
97. A. J. Bard, L. R. Faulkner, J. Leddy and C. G. Zoski, Electrochemical methods: fundamentals and applications, Wiley New York, 1980.
98. B. J. Hwang, R. Santhanam and Y. L. Lin, Electrochim. Acta, 2001, 46, 2843-2853.
99. D. Pletcher, R. Greff, R. Peat, L. Peter and J. Robinson, Instrumental methods in electrochemistry, Elsevier, 2001.
100. D. Pletcher, A first course in electrode processes, Electrochemical consultancy, 1991.
101. G. Gunawardena, G. Hills, I. Montenegro and B. Scharifker, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 138, 225-239.
102. P. Allongue and E. Souteyrand, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 286, 217-237.
103. G. Gunawardena, G. Hills, I. Montenegro and B. Scharifker, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 138, 255-271.
104. B. Scharifker and G. Hills, Electrochim. Acta, 1983, 28, 879-889.
105. J. A. Mitchell, W. R. Pitner, C. L. Hussey and G. R. Stafford, J. Electrochem. Soc., 1996, 143, 3448-3455.
106. J. M. Hartley, C.-M. Ip, G. C. Forrest, K. Singh, S. J. Gurman, K. S. Ryder, A. P. Abbott and G. Frisch, Inorg. Chem., 2014, 53, 6280-6288.
107. F. Brusciotti and P. Duby, Electrochim. Acta, 2007, 52, 6644-6649.
108. S. Z. El Abedin, A. Saad, H. Farag, N. Borisenko, Q. Liu and F. Endres, Electrochim. Acta, 2007, 52, 2746-2754.
109. S. Fashu, C. Gu, X. Wang and J. Tu, Surf. Coat. Technol., 2014, 242, 34-41.