簡易檢索 / 詳目顯示

研究生: 柯柏任
Ko, Po-Jen
論文名稱: 壓電平台之設計、製造與控制
Design, Manufacturing and Control of Piezo-Stage
指導教授: 田思齊
Tien, Szu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 85
中文關鍵詞: 壓電平台前饋控制H∞控制遲滯現象補償
外文關鍵詞: Piezo-stage, feedforward control, H∞ control, hysteresis compensation
相關次數: 點閱:117下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要研究目的在於設計與製造壓電平台,並且著重於達成壓電平台的精密定位。由於非線性磁滯現象存在於壓電致動器中,因而造成了壓電平台的定位誤差。除此之外,由於震動現象的影響,使得高頻的精密定位產生定位誤差。因此,本論文將利用基於Preisach模型的前饋控制(feedforward control based on Preisach model)去補償非線性磁滯現象,此外,H∞控制以及最佳化前饋控制(optimal inversion based feedforward control)將被實現於改善振動現象。實驗結果證明,經由H控制、最佳化前饋控制以及基於Preisach模型的前饋控制將能有效的提高壓電平台的定位效能並且達成精密定位。

    The purpose of this thesis is to design and manufacture piezo-stage, additionally, this thesis focus on control the piezo-stage such that can be achieved precision positioning. Positioning error in piezo-stage occurs due to the hysteresis effect of piezo actuator, and the vibration effect especially when the stage is operated at high frequency. Therefore, in this thesis, the feedforward control based on Preisach model was used to compensate for hysteresis effect. Moreover, H∞ control and the optimal inversion based feedforward control were implemented to compensate for vibration effect. Experiment results showed that, the proposed control method can improve the tracking performance and achieve precision positioning.

    TABLE OF CONTENTS Page List of Figures . . . . . . . . . . . . . . . . . . . . . . . .iii List of Symbols . . . . . . . . . . . . . . . . . . . . . . . .viii Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . .1 1.1 Review of piezo-stage . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2: Basics of Piezo Actuator and Problem Formulation . . . . . . 5 2.1 Basics of Piezo actuator . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Challenges of Precision Positioning with piezo-stage . . . . . . . . . 7 Chapter 3: Design of Piezo-stage . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Introduction of Flexure Mechanism . . . . . . . . . . . . . . . . . . 12 3.2 Specifications of Piezo-Stage . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 4: Control Scheme and Simulation Result . . . . . . . . . . . . . 19 4.1 Modeling and Compensation for Creep Effect . . . . . . . . . . . . 19 4.2 Modeling and Compensation for Hysteresis Effect . . . . . . . . . . 21 4.3 Modeling and Compensation for Vibration Effect . . . . . . . . . . 33 Chapter 5: Experiment Setup and Procedures . . . . . . . . . . . . . . . 51 5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Experiment Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 55 Chapter 6: Experiment Results and Discussions . . . . . . . . . . . . . . 59 6.1 Inverse-Model-Based Feedforward Control . . . . . . . . . . . . . . 59 6.2 H1 control with inversion of Preisach model . . . . . . . . . . . . . 65 6.3 H1 control combined with Feedforward Control . . . . . . . . . . . 67 6.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Chapter 7: Conclusion and Future Work . . . . . . . . . . . . . . . . . . 72 7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Appendix A: Circuit Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 76 Appendix B: Calibration of Optical Sensor . . . . . . . . . . . . . . . . . . 78 Appendix C: Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Appendix D: CAD of piezo-stage . . . . . . . . . . . . . . . . . . . . . . . . 82 Appendix E: State-Space Form of Interconnection Matrix . . . . . . . . . . 84

    [1] J. Karki. Signal conditioning piezoelectric sensors. Texas Instruments Application Report, pages 1–6, 2000.
    [2] K. K. Leang and S. Devasia. Iterative learning control of piezo positioners for long-range spm-based nanofabrication. The 3rd IFAC Symposium on Mechatronic Sys- tems, (Manly Beach, Sydney, Australia), 2004.
    [3] G. M. Clayton, S. Tien, A. J. Fleming, S. O. R Moheimani, and S. Devasia. Inverse-feedforward of charge-controlled piezopositioners. The 4th IFAC Symposium on Mechatronic Systems, 18:273–281, 2008.
    [4] Physik Instrumente(PI). Designing with piezoelectric transducers: Nanopositioning fundamentals.
    [5] D. Croft and S. Devasia. Vibration compensation for high speed scanning tunneling microscopy. Review of Scientific Instruments, 70:4600–4605, 1999.
    [6] G. Shed D. Croft and S. Devasia. Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. ASME J. Dyn. Syst., Meas., and Control, 123:35-43, 2001.
    [7] K. K. Leang. Iterative Learning Control of Hysteresis in Piezo-based Nanopositioners: Theory and Application in Atomic Force Microscopes. PhD thesis, University of Washington,Mechanical Engineering, 2004.
    [8] G. Schitter, A. Stemmer, and F. Allgower. Robust two-degree-of-freedom control of an atomic force microscope. Asian Journal of Control, 6,no.2:156– 163, 2004.
    [9] X. Tan, R. Venkataraman, and P. S. Krishnaprasad. Control of hysteresis: theory and experimental results. Proc. SPIE, 4326:101-112, 2001.
    [10] O. M. El Rifai. Modeling and Control of Undesirable Dynamics in Atomic Force Microscopes. PhD thesis, Massachusetts Institute of Technology, 2002.
    [11] A. Sebastian and S. Salapaka. H1, loop shaping design for nano-positioning. Proceedings of the Amencan Control Conference, Denver, 4-6:3708–3713, 2003.
    [12] K. Zhou and J. C. Doyle. Essentials of Robust Control. Prentice-Hall, New Jersey, 1997.
    [13] W. P. Mason. Piezoelectricity, its history and applications. J. Acoust. Soc. Am., 70.
    [14] L. Gabriel. Principe de la conservation de l’electricite. Annales de chimie et de physique, 24:145–172, 1881.
    [15] Piezomechanik GmbH. Low voltage co-fired multilayer stacks, rings and chips for actuation. page 25.
    [16] L. Malvern. Introduction to the mechanics of a continuous medium. Prentice- Hall, New Jeresy, 1969.
    [17] W. D. Callister. Materials Science and Engineering: An Introduction. John Wiley and Sons Inc, San Francisco, 1994.
    [18] H. C. Liaw and B. Shirinzadeh. Enhanced adaptive motion tracking control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation. Sensors and Actuators A: Physical, 147:254-262, 2008.
    [19] H. Liu, B. Lu, Y. Ding, Y. Tang, and D. Li. A motor-piezo actuator for nanoscale positioning based on dual servo loop and nonlinearity compensation. Micromechanics and Microengineering, 13:295-299, 2003.
    [20] P. Gao, S. M. Swei, and Z. Yuan. A new piezodriven precision micropositioning stage utilizing flexure hinges. Nanotechnology, 10:394-398, 1999.
    [21] Y.Wu and Z. Zhou. Design calculations for flexure hinges. American Institute of Physics, 73,no.8:3101-3106, 2002.
    [22] W. Xu and T. G. King. Mechanical amplifier design for piezo-actuator applications. The Institution of Electrical Engineers, 1995:1-5, 1995.
    [23] J. M. Gere and S. P. Timoshenko. Mechanics of Materials. PWS Publishing Company, Boston, 1997.
    [24] Betzalel. Avitzur. Metal Forming: Processes and Analysis. McGraw-Hill, New York, 1968.
    [25] Y. Nakasone, S. Yoshimoto, and T.A. Stolarski. Engineering Analysis with ANSYS Software. Elsevier Butterworth-Heinemann, Oxford, 2006.
    [26] Z. Chen, L. Hao, D. Xue, X. Xu, and Y. Liu. Modeling and control with hysteresis and creep of ionic polymer-metal composite(ipmc) actuators. Control
    and Decision Conference, 2008. CCDC 2008. Chinese, pages 865–870, 2008.
    [27] F.Preisach. Uber die magnetische nachwirkung. Zeitschrift fur Physik, 94:277–302, 1935.
    [28] M. A. Krasnoselskii and A. V. Pokrovskii. Systems with Hysteresis. Springer- Verlag, New York, 1989.
    [29] P. Ge and M. Jouaneh. Modeling hysteresis in piezoceramic actuators. Precision Engineering, 17:211–221, 1995.
    [30] M. E. Shirley and R. Venkataraman. On the identification of preisach measures. Smart Structures and Materials 2003: Modeling, Signal Processing, and Control, Ralph C. Smith Editor, Proceedings of SPIE, 5049:326-336 ,2003.
    [31] P. Ge and M. Jouaneh. Tracking control of a piezoceramic actuator. IEEE Transactions on Control Systems Technology, 4,no.3:209-216, 1996.
    [32] J. S. Dewey, K. K. Leang, and S. Devasia. Experimental and theoretical results in output-trajectory redesign for flexible structures. ASME J Dyn Syst Measure Contr, 120:456–461, 1998.
    [33] J. Dong, S. M. Salapaka, and P. M. Ferreira. Robust control of a parallelkinematic nanopositioner. ASME J Dyn Syst Measure Contr, 130:041007–1 – 041007–15, 2008.
    [34] P. C. P. Chao, L. D. Liao, H. H. Lin, and M. H. Chung. Robust dual-stage and repetitive control designs for an optical pickup with parallel cantilever beams powered by piezo-actuation. Microsyst Technol, 16:317–331, 2010.
    [35] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback Control Theory. Dover Publications, New York, 1992.
    [36] P. Lundstrom, S. Skogestad, and Z. Q. Wang. Performance weight selection for h−infinity and μ−control methods. Transaction Institute of Measurement and Control, 13,no 5:241–252, 1991.
    [37] J. C. Doyle, K. G., P. P. Khargonekar, and B. A. Francis. State-space solutions to standard h2 and h1 control problems. IEEE Transaction on Automatic Control, 34,no 8:831–847, 1989.
    [38] G. Schitter, P. J. Thurner, and P. K. Hansma. Design and input-shaping control of a novel scanner for high-speed atomic force microscopy. Mechatronics, 18:282–288, 2008.
    [39] Vishay Semiconductors. Transmissive optical sensor with phototransistor output. pages 1–2.

    下載圖示 校內:2011-07-30公開
    校外:2011-07-30公開
    QR CODE