| 研究生: |
吳麗嵐 Wu, Li-Lan |
|---|---|
| 論文名稱: |
苯基吡啶銥金屬及苯基仳唑銥金屬於有機發光元件的應用 Application of Phenyl-pyridine Iridium and Phenyl-pyrazole Iridium Complexes in the Organic Light-emitting Diodes |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 銥金屬 、發光材料 、有機發光二極體 |
| 外文關鍵詞: | emitter, iridium, organic light-emitting diodes |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目的在於合成新的phenylpyridine (pp)化合物,這些化合物可以與三氯化銥以cyclometalation 的方式配位,形成具有強磷光性質的有機銥金屬錯合物。我們針對這些化合物進行光物理,電化學性質的探討,並選取部分銥金屬化合物進行有機發光二極體元件測試。
在光物理方面,配位基pp 的吸收光譜範圍在250~350nm。Phenylpyridine 和phenylpyrazole 系列配位基與銥金屬形成錯合物後,發射光譜從452nm 到552 nm,可呈現藍到綠色的磷光。多數的配位基與銥形成之錯合物於室溫時,在無氧溶液中多有不錯的量子產率。化合物的最高佔有軌域(HOMO)之能階可以藉由循環伏安法測量得知,並結合吸收邊界求得能障(energy gap),最後可推算出最低未佔有軌域(LUMO)。實驗結果發現HOMO、LUMO 值皆與文獻相吻合。
此研究分為三部份:第一部份是增加苯基吡啶類(2-phenylpyridine)分子結構的共軛系統,探討其放光位置的改變,發現增加共軛系統,未能使化合物的放光產生紅位移,主要是因為配位基與中心金屬混成時,使T1→S0 能階分裂更大所造成。元件結構為ITO/PEDOT:PSS/
PBD:PVK+dopant/Ca:Al,綠光的(DBQ)2Ir(acac)有相當不錯的效率,當電流密度為100 cd/m2時,發光效率可達7.42%,最大亮度可達13800cd/m2。
第二部份,將銥金屬錯合物的第三個配位基由含氧雜環配位基改換含氮雜環配位基,發現此項變化改變了材料的HOMO 及LUMO,並將材料的放光位置往藍移20 nm,主要是因為引入第三個配位基降低分子結構的共軛系統;另外,也發現使用含氮雜環配位基金屬錯合物能將量子效率大大的提升。
第三部分合成一系列具有氟取代基的苯基吡啶化合物,並將這一系列的配位基和銥金屬錯合,發現這一系列的銥金屬錯合物的放光波長453~482 nm,並取部份銥金屬錯合物製備成元件進行測試,元件結構為ITO/2-TNATA/NPB/TCB + 6% dopant/BCP/Alq3/LiF,藍光的
BL24 在電流密度為100 mA/cm2 時,亮度達653cd/m2,最大亮度達800 cd/m2;綠光的BL35 在電流密度為10 mA/cm2 時,亮度達834cd/m2,最大亮度1046 cd/m2。
New phenylpyridine (pp) compounds have been synthesized. These compounds undergo cyclometalation with iridium trichloride to form
iridium (III) complexes which exhibit strong phosphorescence. The photophysical and electrochemical properties of these compounds were investigated. Electroluminescent devices were fabricated from selected iridium complexes.
The absorption wavelength of the pp ligands range from 250nm~350nm. The iridium complexes emit blue to green phosphorrescence with wavelength ranging from 452nm~552nm. Most of iridium complexes possess good quantum yields in air-free solution at room temperature. The HOMO (Highest Occupied Molecular Orbital) and
LUMO (Lowest Unoccupied Molecular Orbital) energy levels for each complexes were estimated from cyclic voltammetry and absorption spectroscopy date.
This thesis has three parts. The first part was studies conjugation length effect the (DBQ)2Ir(acac) exhibit a bathochromic shift at 530nm in
comparison with (ppy)2Ir(acac), but a blue shift in comparisons with (DBQ)2Ir(acac). This phenomenon is interesting; possibly that the mixing of the ligand DBQ and Ir center may cause the energy level split up. This effect raises the energy level (T1) of (DBQ)2Ir(acac), and forms larger energy gap (S0→T1). As a result, (DBQ)2Ir(acac) shows a marked blue shift compared to (Bzq)2Ir(acac) in the photoluminescence (PL). The structure of device we used is : ITO/PEDOT:PSS/PBD:PVK+dopant
/Ca:Al. Green-emitting devices fabricated from (DBQ)2Ir(acac) exhibit good efficiencies. At a current density of 100 cd/m2, the luminescent
efficiency reaches 7.42%, and the maximum brightness of (DBQ)2Ir(acac) was 13800 cd/m2.
In the second part, we change the ancillary to alter the HOMO and LUMO of the complexes. These new complexes exhibit a 20nm bathochromic shift with respect to (ppz)2Ir(acac), and an improved
quantum yield.
In the third part, a series of new phenylpyridine compounds were sythesized. The structure of the device we used is : ITO/2-TNATA/NPB/TCB + 6% dopant/BCP/Alq3/LiF. Blue-emitting device fabricated from BL24. At current density of 100 mA/cm2, the brightness reaches 653
cd/m2, and the maximum brightness can reach 800 cd/m2. Green-emitting device fabricated from BL35. At current density of 10 mA/cm2, the
brightness reaches 834 cd/m2, and the maximum brightness can reach 1046 cd/m2.
1. 顧鴻壽, 光電有激電機發光顯示器技術應用,新文京
開發出版有限公司,台北縣, 民90.
2. Kelly, S. M., Flat Panel Display: Advanced
Organic Materials, MPG BOOKs Ltd, Bodmin,
Cornwall 2000.
3. Nalwa, H. S. and Rohwer, L. S., Editor
“Handbook of Luminescence, Display
Materials, and Devices: Inorganic
Light-Emitting Diodes”, American Scientific
Publishers 2003.
4. Nalwa, H. S. and Rohwer, L. S., Editor
“Handbook of Luminescence, Display
Materials, and Devices: Inorganic Light-
Emitting Diodes”, American Scientific
Publishers 2003.
5. Nalwa, H. S. and Rohwer, L. S., Editor
“Handbook of Luminescence, Display
Materials, and Devices: Display Devices”,
American Scientific Publishers 2003.
6. Tang, C. W. and VanSlyke, S. A., Appl. Phys.
Lett., 51, 913-915, 1987.
7. Tang, C. W.; VanSlyke; S. A. and Chen, C. H.,
J. Appl. Phys., 65, 3610-3616, 1989.
8. 陳金鑫, 黃孝文, 有機電激發光材料與元件, 五南出
版社, 民94.
9. Skoog, D. A. et al, Principles of
Instrumental Analysis, fifth edition, page
357.
10. Jiang, X; Liu, Y.; Song, X. and Zhu D.,
Synth. Met., 87, 175-178, 1997.
11. Pielichowski, J.; Chrzszcz, R.; Nizio, S.;
Barta, P. and Sanetra, J., Synth. Met., 94,
123-125, 1998.
12. Hanai, N.; Sumitomo, M. and Yanag, H., Thin
Solid Films, 331, 106-112, 1998.
13. Vestweber, H. and Rieβ, W., Synth. Met., 91,
181-185, 1997.
14. Riel, H.; Brütting, W.; Bererlein, T.;
Haskal, E.; Müller, P. and Riess, W., Synth.
Met., 111-112, 303-306, 2000.
15. Zhilin, Z.; Xueyin, J. and Shaohong, X.,
Thin Solid Films, 363, 61-63, 2000.
16. Era, M.; Tsutsi, T. and Saito, S., Appl.
Phys. Lett., 67, 2436-2438, 1995.
17. Aminaka, E. I.; Tsutsui, T. and Saito, S.,
J. Appl. Phys., 79, 8808-8815, 1996.
18. Era, M.; Tsutsi, T.; Takehara, K.; Isomura,
K. and Taniguchi, H., Thin Solid Films,
363, 229-231, 2000.
19. Hung, L. S.; Tang, C. W. and Mason, M. G.,
Appl. Phys. Lett., 70, 152-154, 1997.
20. Staudigel, J.; Stöβel, M.; Steuber, F.;
Blässing, J. and Simmerer, J., Synth. Met.,
111-112, 69-73, 2000.
21. Heil, H.; Steiger, J.; Karg, S.; Gastel, M.;
Ortner, H.; Seggern, H. V.and Stöβel,
M.;J. Appl. Phys., 89, 420-424, 2001.
22. Wenping, H.; Matsumura, M.; Wang, M. and
Jin, L., Appl. Phys. Lett., 77, 4271-4273,
2000.
23. Wang, C.; Jung, G. Y.; Hua, Y.; Pearson, C.;
Bryce, M. R.; Petty, M. C.; Batsanov, A. S.;
Goeta, A. E. and Howard, J. A. K., Chem.
Mater., 13, 1167-1173, 2001.
24. Yeh, Y. R.; Hsiao, H. T. and Wu, C. G.,
Synth. Met., 121, 1651-1652, 2001.
25. Baldo, M. A.; O’Brien, D. F.; You, Y.;
Shoustikov, A.; Sibley, S.; Thompson, M. E.;
Forrest, S. R., Nature, 395, 151, 1998.
26. Thompson, M. E.; Shoustikov, A.; You, Y.;
Sibley, S.; Baldo, M.; Koslov, V.;
Burrows, E. P.; Forrest, S. R. MRS Abstract,
G2.4, Spring Meeting, 1998.
27. O’Brien, D. F.; Baldo, M. A.; Thompson, M.
E.; Forrest, S. R., Appl. Phys. Lett, 74,
442, 1999.
28. Baldo, M. A.; O’Brien, D. F.; Thompson, M.
E.; Forrest, S. R., Phys. Rev. B, 60, 14422,
1999.
29. Shirota, Y.; Okumoto, K.; Inada, H., Synth.
Met., 111, 387, 2000.
30. VanSlyke, S. A.; Chen, C. H.; Tang, C. W.;
Appl. Phys. Lett., , 69, 2160, 1996
31. Shirota, Y.; Kuwabara, Y.; Inada, H., Appl.
Phys. Lett., 65, 807, 1994.
32. Yang, Y.; Heeger, A. J., Appl. Phys. Lett.,
64, 1245, 1994.
33. Cao, Y.; Yu ,G.; Zhang, C.; Menon, R.;
Heeger ,A. J., Synth. Met., 87, 171, 1997.
34. Deng, Z. B.; Ding, X. M.; Lee, S. T.;
Gambling, W. A., Appl. Phys. Lett., 74,
2227, 1999.
35. Elschner, A.; Bruder, F.; Heuer, H. W.;
Jonas, F.; Karbach, A.; Kirchmeyer, S.;
Thurm, S.; Wehrmann, R., Synth. Met., 111,
139, 2000.
36. Brown, T. M.; Kim, J. S.; Friend, R. H.;
Caciall, F.; Daik, R.; Feast, W. J., Appl.
Phys. Lett., 75, 1679, 1999.
37. Kepler, P. G., Phys. Rev., 119, 1226, 1960.
38. Martin, E. H.; Hirsch, J., Solid State
Commun., , 7, 783, 1969.
39. Pope, M.; Swenberg, C. E., Electronic
Process in Organic Crystals and Polymers;
Oxford University Press: New York, 1999.
40. Warman, J. M.; van de Craats, A. M., Mol.
Cryst. Liq. Cryst., 396, 41, 2003.
41. Horowitz, G., Adv. Mater., 10, 365, 1998.
42. Babel, A.; Jenekhe, S. A., J. Am. Chem.
Soc., 125, 13656, 2003.
43. Sprouse, S.; King, K. A.; Spellane, P. J.;
Watts, R. J., J. Am. Chem. Soc., 106, 6647-
6653, 1984.
44. Crosby, G. A., J. Chim. Phys., 64, 160, 1967.
45. Adamovich, C.; Kwong, R. C.; Djurovich, P.;
Adamovich, V.; Baldo, M. A.; M. E. Thompson,
S. R. Forrest, Appl. Phys. Lett., 79, 2082,
2001.
46. Holmes R. J., D’Andrade B. W., Forrest S.
R., Ren X., Li J., Thompson M. E., Appl.
Phys. Lett., 83, 3818, 2003.
47. Ren, X.; Li, J.; Holmes, R. J.; Djurovich,
P. I.; Forrest, S. R.; Thompson, M. E.,
Chem. Mater., 16, 4743, 2004.
48. Li, J.; Djurovich, P. I.; Alleyne, B. D.;
Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M.
E., Polyhedron, 23, 419, 2004.
49. Yeh, S. J.; Wu, W. C.; Chen, C. T.; Song, Y.
H.; Chi, Y.; Ho, M. H.; Hsu, S. F.; Chen, C.
H., Adv. Mater., 17, 285, 2005.
50. Tsutsui, T.; Yang, M.-J.; Yahiro, M.;
Nakamura, K.; Watanabe, T.; Tsuji, T.;
Fukuda, Y.; Wakimoto, T.; Miyaguchi, S.,
Jpn. J. Appl. Phys., 38, 1502, 1999.
51. Adachi, C.; Baldo, M. A.; Thomphoson, M. E.;
Forrest, S. R., J. Appl. Phys., 90, 5048,
2000.
52. O’Brien, D. F.; Baldo, M. A.; Thompson, M.
E.; Forrest, S. R., Appl. Phys. Lett., 74,
442, 1999.
53. Baldo, M. A.; Thomphson, M. E.; Forrest, S.
R., Nature, 403, 750, 2000.
54. Handy, E. S.; Pal, A. J.; Rubner, M. F., J.
Am. Chem. Soc., 121, 3525, 1999.
55. Bernhard, S.; Gao, X.; Malliaras, G. G.;
Abruna, H. D., Adv. Mater., 14, 436, 2002.
56. Baldo, M. A.; Lamansky, S.; Burrows, P. E.;
Thompson, M. E.; Forrest, S. R.; Appl. Phys.
Lett., 75, 4, 1999.
57. Puan, J. P.; Sun, P. P.; Cheng, C. H., Adv.
Mater., 15, 224, 2003.
58. Laskar, I. R.; Hsu, S. F.; Chen, T. M.,
polyhedron, 24, 189-200, 2005.
59. Coppo, P.; Plummer, E. A. and Cola, L. D.,
Chem. Commun., , 1774-1775, 2004.
60. Lamansky, S.; Thomphson, M. E.; Adamovich,
V.; Djurovich, P. I.; C. Adachi; Baldo, M.
A.; Forrest, S. R.; Kwong, patent US 200201-
82441A1.
61. Adachi, C.; Kwong, R. C.; Djurovich, P.;
Adamovich, V.; Baldo, M. A.; Thompson, M.
E.; Forrest, S. R., Appl. Phys. Lett., 79,
2082, 2001.
62. Pommerehne, J.; Guss, W.; Mahrt, R. F.;
Bassler, H.; Proseh, M. and Daub, J., Adv.
Mater., 7, 551-554, 1995.
63. Koepp, H. M.; Wendt, H. and Strehlow, H. Z.,
Electrochem., 64, 483, 1960.
64. Wu, I. Y.; Lin, J. T.; Tao, Y. T.;
Balasubramaniam, E., Adv. Mater., 12, 668,
2000.
65. Nonoyama M., Bull.Chem. Soc. Jan, 47, 767,
1974.
66. Pavlik, J. W.; Connors, R. E.; Burns, D. S.;
Kurzweil, E. M., J. Am.Chem. Soc., 115,
7645, 1993.
67. Cativiela, C.; Laureiro, J. I. G.; Elguero,
J.; Elguero, E., Gazz. Chim. Ital., 121,
477, 1991.
68. Cativiela, C.; Laureiro, J. I. G.; Elguero,
J.; Elguero, E., Gazz. Chim. Ital., 119, 41,
1989.
69. Cativiela, C.; Laureiro, J. I. G.; Elguero,
J.; Elguero, E., Gazz. Chim. Ital., 116,
119, 1986.
70. Hay, P. J., J. Phys. Chem. A, 106, 1634-
1641, 2002.
71. Lamansky, S.; Djurovich, P.; Murphy, D.;
Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.;
Burrows, P. E.; Forrest, S. R.; Thompson, M.
E., J. Am. Chem. Soc., 2001, 123, 4304-4312.
72. Lamansky, S.; Djurovich, P.; Murphy, D.;
Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.;
Bortz, M.; Mui, B.; Bau, R.; Thompson, M.
E., Inorg. Chem., 2001, 40, 1704-1711.
73. Colobbo, M. G.; Brunold, T. C.; Riedener,
T.; Güdel, H. U., Inorg. Chem., 33, 545-550,
1994.
74. Burrows, P. E.; Shen, Z.; Bulovic, V.;
McCarty, D. M. and Forrest, S. R., J. Appl.
Phys., 79, 7991-8006, 1996.
75. Brooks, J.; Babayan, Y.; Lamansky, S.;
Djurovich, P. I.; Tsyba, I.; Bau, R., and
Thompson, M. E., Inorg. Chem., 41, 3055
3066, 2002.