簡易檢索 / 詳目顯示

研究生: 龔泓家
Kong, Hong-Jia
論文名稱: 新型淺溝槽隔離技術運用於奈米金氧半 電晶體之研究
Studies of the Novel Shallow Trench Isolation Technology for Deep Nano CMOS Device Application
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 46
中文關鍵詞: 淺溝槽隔離高密度電漿化學沉積
外文關鍵詞: STI, HDPCVD
相關次數: 點閱:168下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在奈米金氧半元件淺溝槽隔離(STI)製造中, 高密度電漿化學沉積(HDP CVD)方式成功地提供了有效的解決方案。 然而,隨著元件不斷的微縮以提高元件特性的過程中, 傳統HDP沈積製程,在90nm以下會產生過多的溝槽空洞(void)而導致晶園良率損失。 為了克服這個傳統製程容易產生溝槽孔洞的問題, 吾人研發加入一道以NF3為基礎的乾式蝕刻, 再配合反覆式的沈積和蝕刻的新型STI製程。
    本文報導利用這一種新型技術實怍的STI結構及電性分析究。 結構分析主要在探討如何調整最佳化製程參數, 如D/S(deposition/sputter)值與蝕刻厚度, 以及控制交替式沈積和蝕刻組合, 並觀察STI Divot 和 Step-height會對元件產生的影響。 在電性分析中, 則比較其漏電流及崩潰電壓的表現。 經由分析結果證實吾人所研發的新型製作技術更適合65nm以下金氧半電晶體元件的淺溝槽隔離的製作。

    High density plasma chemical vapor deposition (HDP-CVD) has been successfully applied in the nano CMOS technology for shallow trench isolation (STI) gap fill. However, as CMOS device continue to shrink for improving its performance, the traditional HDP process can not meet the requirement of void free in STI gap-fill.
    In this work, we propose a novel HDP gap-fill process to overcome the void issue for 65nm and beyond application. The novel HDP process was developed by joining an extra NF3-base dry etching in the traditional HDP process and to repeat the deposition and etch cycles. We investigated the key aspects of the novel STI process with both structure and electric analyses to provide better understanding on gap fill optimization and manufacturing capability.
    In the structure analysis, we studied the influence of D/S(deposition/sputter) ratio and the etched thickness. Besides, impact of the deposition and etch cycles repeat rates, divot ad step-height on STI characteristics were realized. In the electrical analysis, the junction leakage and breakdown voltage were measured and compared to the traditional HDP process. Both analyses evidence the developed method is more suitable for 65nm and beyond CMOS technologies applications.

    摘 要 I Abstract III 第一章 序論 1 1.1 MOS元件技術現況與發展 1 1.2 研究背景與動機 3 1.3 論文架構 3 第二章、理論背景 5 2.1 MOS元件隔離技術簡介 5 2.1.1 淺溝槽隔離技術簡介 5 2.1.2 淺溝槽隔離製作整合流程 5 2.2 淺溝槽隔離對元件特性之影響 6 2.2.1 對元件漏電流的影響 6 2.2.2 STI divot與step-height對元件之影響 7 2.3 新型淺溝槽隔離製程 8 2.3.1 溝槽深寬比對填洞能力之影響 8 2.3.2 新型隔離製程之介紹 8 第三章、實驗方法與進行步驟 10 3.1 新型製程機台簡介 10 3.2 新型製程淺溝槽隔離(STI)製作 11 3.2.1 選擇適當之D/S值 11 3.2.2 選擇適當之蝕刻方式 12 3.2.3 選擇適當之D/S和蝕刻循環數組合 13 3.3 漏電流量測之測試鍵簡介 13 第四章 實驗結果分析與討論 14 4.1 淺溝槽結構分析 14 4.1.1 沈積與蝕刻步驟對填洞能力之影響 14 4.1.2 STI divot與step-height 16 4.2 淺溝槽結構電性分析 17 4.3 結論 18 第五章 結論 19 參考文獻 20

    [1] International Technology Roadmap for Semiconductors 2005
    Edition Executive Summary, p.61 (2005)
    [2] S. Wolf, "Silicon Processing for the VLSI Era”, Vol-2, p.340,
    Lattice Press (1990).
    [3] L. Peter, Semiconductor International, Vol-22, pp.69-75
    (April, 1999).
    [4] E. Korczynski, "HDP-CVD: Trying to lasso lighting",
    Solid-State Technol., 38, pp.63-73 (1996).
    [5] J. H. Lee, J. W. Lee and J. Y. Lee, ”Study of shallow silicon trench etch process using planar inductively coupled plasmas“, J. Vacuum Sci. Technol. A15, pp.573 (1997).
    [6] T. Kuroi, T. Uchida, K. Horita, M. Sakai, Y. Itoh, Y. Inoue and T. Nishimura ,“Stress Analysis of Shallow. Trench Isolation for 256MDRAM and beyond”, IEDM Tech. Digest, pp.141-144 (1998).
    [7] T.K. Kim, D.H. Kim, J.K. Park, T.S. Park, Y.K. Park, H.J. Lee, K.Y. Lee, J.T. Kong, J.W. Park, IEDM Tech. Digest, pp.145-148 (1998).
    [8] K. Saino, K. Okonogi, S. Horiba, M. Sakao, M. Komuro, Y. Takaishi, T. Sakoh, K. Yoshida, and K. Koyama, IEDM Tech. Digest, pp.149-152 (1998).
    [9] G. Scott, J. Lutze, M. Robin, F. Nouri, and M. Mainley, “NMOS drive current reduction cause by layout and trench isolation stress”, in IEDM tech. Dig., pp.827, 1999.
    [10] 林鴻志, “奈米金氧半電晶體元件技術發展趨勢(I)”, NDL 奈米通訊第七卷第一期 中華民國89年2月.
    [11] J. Radecker, H, Weber, ”Extneding the HDP-CVD Technology to the 90nm Node and Beyond with an In-Situ Etch Assisted(ISEA) HDP-CVD”, IEEE/SEMI Advanced Manufacturing Conference, 2003.
    [12] S. M. Sze, ”Physics of Semiconductor Devices”,2nd ED., John Wiley and Son(1983).
    [13] T. Kuroi, T. Uchida, K. Horita, M. Sakai, Y. Itoh, Y. Inoue and T. Nishimura, IEDM Tech. Digest, pp.141-144 (1998).
    [14] Youngmin Kim, Seetharaman Sridhar, Amitava Chatterjee, “Trench Isolation Step-Induced (TRISI) Narrow Width Effect on MOSFET”,IEEE Electron Device Letters, Vol. 23, No. 10, p600-603 (2002).
    [15] S.D. Nemani, Y.S. Lee, E. Yieh, A. Wang, J.T Bloking, L. T. Han, “Integrated Process Modulation(IPM) A Novel solution for gap fill with HDP-CVD”, pending US Patent, 2005.
    [16] E. Yieh, L.T. Han, A. Wang, L. Zhang,“Low Stress STI films and Method” US patent#7,244,658; Published jul. 17, 2007.

    無法下載圖示 校內:2016-07-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE