| 研究生: |
張德豪 Tiong, Teck-Hou |
|---|---|
| 論文名稱: |
石墨烯及其衍生物應用於表面增強拉曼散射及其生物分子的檢測 Application of graphene and its derivative for molecular sensing by Surface Enhanced Raman Scattering |
| 指導教授: |
曾永華
Tzeng, Yonhua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 石墨烯 、表面增強拉曼散射 、侷域性表面電漿共振 、R6G 分子 |
| 外文關鍵詞: | single layer graphene, surface-enhanced Raman scattering, localized surface plasmon resonance, Rhodamine 6G |
| 相關次數: | 點閱:120 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們證實覆蓋在金奈米粒子(AuNPs)上的單層石墨烯(single layer graphene,Gr)將會抑制由金奈米粒子所帶來的表面增強拉曼散射
(surfaced-enhanced Raman scattering,SERS)。雖然垂直於石墨烯表面的電場可以很輕易地穿透石墨烯,但是靠近具導電性石墨烯表面且平行於基板表面的電場將會很弱,這樣的結果造成所量測到吸附在石墨烯表面之檢測分子的拉曼訊號將會被抑制。受到遠程電漿氫化處理後的高阻值石墨烯,將允許由金奈米粒子之間電漿耦合所感應的強大電磁場可以穿透過石墨烯,並增強吸附在石墨烯薄膜表面之R6G分子的SERS訊號。
在此篇論文,我們同時也證明了覆蓋在金奈米粒子上的石墨烯,其表面所吸附之R6G分子的SERS訊號強度將隨著石墨烯曝露在遠程氫電漿時間的增加所導致的電阻值提高,而逐漸地變強。
We demonstrate the suppression of gold-nanoparticle induced surface-enhanced Raman scattering (SERS) by single layer graphene(Gr)on gold nanoparticles (AuNPs). Although electric fields perpendicular to Gr surface can easily penetrate through Gr,electric fields near the surface of a conductive Gr and in directions parallel to the substrate surface are weak, resulting in measured SERS signal intensity from molecules adsorbed on the Gr surface to be suppressed. The high resistivity of the Gr after subjecting to remote plasma hydrogenation allows plasmonic coupling induced strong local electromagnetic fields among the gold nanoparticles to penetrate the Gr, and thus enhances the SERS efficiency of R6G molecules adsorbed on the Gr film.
In this thesis, we also report evidences of progressively
increasing SERS signal intensity, due to increasing electrical resistivity of Gr with its exposure time to remote hydrogen plasma,of R6G molecules on Gr covered AuNPs which are deposited on an oxidized silicon chip.
[1]“奈米檢測技術”國家實驗研究院儀器科技研究中心,2009.
[2] A. Smekal, Naturwiss, 11, 873 (1923).
[3] C. V Raman and K. S.Krishnan, Nature, 121, 501 (1928).
[4] Richard L, McCreery, “Raman Spectroscopy for chemical
analysis”, New York: Wiley Interscience, (2000).
[5] Alan Campion and Patanjali Kambhampati, “Surface-enhanced Raman Scattering ”, Chemical Society Reviews, Vol.27, 241-250,(1998).
[6] G. V. Pavan Kumar, “Plasmonic nano-architectures for surface enhanced Raman scattering: a review”, Journal of
Nanophotonics,Vol.6, 064503/1-064503/20, (2012).
[7] H. Xu, E. J. Bjerneld, M. Käll,L. Börjesson,“Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering”,Phys. Rev. Lett, Vol.83, 4657-4360, (1999).
[8] H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui,“Direct near-field optical imaging of plasmonic resonances in Metal nanoparticle pairs,”Opt. Express, Vol.18, 165-172,(2010).
[9] Chen-Han Huang, Hsing-Ying Lin, Shihtse Chen, Chih-Yi Liu,Hsiang-Chen Chui, and Yonhua Tzeng, “Electrochemically
fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors”, Optics express, Vol.19, 11441-11450,(2011).
[10] Chih-Yi Liu, Keng-Chih Liang, Waileong Chen, Chia-hao Tu,Chuan-Pu Liu, and Yonhua Tzeng, “Plasmonic coupling of silver Nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy”, Optics Express,Vol.19/ No.18, 17092-17098, (2011).
[11] Weigao Xu , Nannan Mao , and Jin Zhang, “Graphene: A Platform for Surface-Enhanced Raman Spectroscopy”, Small, Vol.9,1206-1224,(2013).
[12] 王翠蓮,“表面增強拉曼光譜技術應用於單分子偵測及生物分子定量分析”, 國立陽明大學醫學工程研究所碩士論文,2004.
[13] A. V. Zayats, I. I. Smolyaninov, A.A.Maradudin,“Nano-optics of surface plasmon polaritons”, Phys. Reports 408, 131-314,(2005).
[14] D. A. Schultz, “Plasmon resonant particles for biological detection”, Current Opinion in Biotechnology 14, 13-22,(2003).
[15] M. Moskovits, “Surface-enhancedspectroscopy”,
Rev.Mod.Phys, 57,783-826, (1985).
[16] S. Kawata, M. Ohtsu, and M. Irie ed. “Nano-Optics”, Springer,(2002).
[17] P. N. Prasad, “Nanophotonics”, Wiley, Hoboken, NJ, (2004).
[18] J. Tominaga and D. P. Tsai ed.“Optical Nanotehcnologies–The Manipulation of Surface and Local Plasmons”, Springer,Heidelberg,(2002).
[19] S. Kawata ed. “Near-Field Optics and Surface Plasmon
Polaritons ,Springer,Berlin, (2001).
[20] 邱國斌、蔡定平, “金屬表面電漿簡介”, 物理雙月刊,廿八卷二期,472-485,(2006).
[21] 吳民耀、劉威志, “表面電漿子理論與模擬”, 物理雙月刊, 廿八卷二期,486-496,(2006).
[22] J. P. Kottmann et. al, “Plasmon resonances of silver nanowires with a nonregular cross section” Phys. Rev. B, Vol.64,235402/1-235402/10,(2001).
[23] K. L. Kelly, et. al, “The Optical Properties of Metal
Nanoparticles: The Influence of Size, Shape, and Dielectric
Environment” J. Phys. Chem. B,Vol.107, 668-677, (2003).
[24] A. Taflove and S. C. Hagness, “Computational Electrodynamics: The Finite-Difference Time-Domain Method”, 3rd ed, Artech House,Boston-London,(2005).
[25] M.-Y. Ng and W.-C. Liu, “Local Field Enhancement of Asymmetric Metallic Nanocylinder Pairs”, Journal of Korean Physics Society Vol.47, S135-S139, (2005).
[26] Schatz, G. C, Young, M. A, Van Duyne, R. P,“Electromagnetic Mechanism of SERS”Top. Appl. Phys Vol.103, 19-46, (2006).
[27] Sun, M. T, Liu, S. S, Chen, M. D, Xu, H. X, “Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer”J. Raman Spectrosc, Vol.40,137-143, (2009).
[28] Wenjun Zhang, Teng Qiu, Xin-Ping Qu, Paul K. Chu, “Atomic layer deposition of platinum thin films on anodic aluminium oxide templates as surface-enhanced Raman scattering substrates”,Vacuum , Vol.8, 257-260, (2013).
[29] Fumitaka Mafune, Jun-ya Kohno, Yoshihiro Takeda, and Tamotsu Kondow, “Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution”, J. Phys. Chem. B,Vol.104,9111-9117, (2000).
[30] 郭清癸、黃俊傑、牟中原, “金屬奈米粒子的製造”, 物理雙月刊,廿三卷六期, 614-624, (2001).
[31] Victor F. Puntes , Kannan M. Krishnan, A. Paul
Alivisatos,“Colloidal Nanocrystal Shape and Size Control:
The Case of Cobalt” , SCIENCE, Vol.291, 2115-2117, (2001).
[32] Katrin Kneipp, Harald Kneipp, Irving Itzkan, Ramachandra R Dasari and Michael S Feld, “Surface-enhanced Raman scattering and biophysics”, J. Phys.:Condens. Matter,
Vol.14,597-624, (2002).
[33] P. C. Lee, D. Meisel, “Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols”, J. Phys. Chem, Vol.86,3391-3395,(1982).
[34] Erdene-Ochir Ganbold, Jin-Ho Park, Uuriintuya Dembereldorj,Kwang-Su Ock and Sang-Woo Joo, “Charge-dependent adsorption of rhodamine 6G on gold nanoparticle surfaces: fluorescence and Raman study, J. Raman Spectrosc.,Vol.42, 1614-1619,(2011).
[35] J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,”J. Phys. Chem. B, Vol.109, 12544-12548,(2005).
[36] Chih-Yi Liu, Chen-Han Huang, Hsing-Ying Lin , Shihtse Chen,Hsiang-Chen Chui, and Yonhua Tzeng, “Ordered 2-D Arrays of Silver Nanoparticles Encapsulated by Alumina for
Applications to Plasmonic Sensors”,11th IEEEInternational
Conference on Nanotechnology,(2011).
[37] 洪詠達, “表面增強拉曼散射於單一細胞監測技術開發”國立陽明大學醫學技術暨工程學院生醫光電研究所碩士論文,2004.
[38] Otto A, Mrozek I, Grabhorn H, Akemann W,“Surface-enhanced Raman scattering”, J. Phys: Condens. Matter, Vol.4,1143-1212,(1992).
[39] Xi Ling, Liming Xie, Yuan Fang, Hua Xu, Haoli Zhang, Jing Kong,Mildred S. Dresselhaus, Jin Zhang and Zhongfan Liu,“Can Graphene be used as a Substrate for Raman Enhancement?”, Nano Lett, Vol.10,553-561,(2010).
[40] Barun Das, Rakesh Voggu, Chandra Sekhar Rout and C. N. R. Rao,“Changes in the electronic structure and properties of graphene induced by molecular charge-transfer”, Chem.
Commun,5155–5157,(2008).
[41] Y. H. Lu, W. Chen, and Y. P. Feng,“Tuning the Electronic Structure of Graphene by an Organic Molecule”, J. Phys. Chem.B,Vol.113, 1-5,(2009).
[42] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin,M. I. Katsnelson, A.K. Geim, and A.I. Lichtenstein,“Molecular Doping of Graphene”, Nano Lett, Vol.8,173-177,(2008).
[43] Arun K Manna and Swapan K Pati,“Tuning the Electronic
Structure of Graphene by Molecular Charge Transfer: A
Computational Study”,Chem. Asian J,Vol.4,855-860,(2009).
[44] M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G.
Martinez, D. K. Maude, A.-L. Barra, M. Sprinkle, C. Berger, W.de Heer, and M. Potemski, “Approaching the Dirac Point in
High-Mobility Multilayer Epitaxial Graphene”,Physic Review
Letter, Vol.101, 267601/1-267601/4,(2008)
[45] http://www.nistep.go.jp/achiev/ftx/eng/stfc/stt037e/qr37pdf/STTqr3705.pdf
[46] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T.J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim,“Fine Structure Constant Defines Visual Transparency of Graphene”,SCIENCE, Vol.320, 1308, (2008).
[47] Y.M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.Y.Chiu,A. Grill, Ph. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene”, Science, Vol.327, 662,(2010).
[48] Charlier, J. C., Eklund, P. C., Zhu, J. & Ferrari, A. C.,“Electron and phonon properties of graphene: Their
relationship with carbon nanotubes”, Topics Appl. Phys,
Vol.111, 673–709,(2008).
[49] Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C., “Graphene photonics and optoelectronics”, Nature Photon, Vol.4,611-622,(2010).
[50] Felice Torrisi, Tawfique Hasan, Weiping Wu, Zhipei Sun, Antonio Lombardo, Tero S. Kulmala, Gen-Wen Hsieh, Sungjune Jung,Francesco Bonaccorso, Philip J. Paul, Daping Chu, and Andrea C. Ferrari, “Inkjet-printed graphene electronics”, ACS Nano,Vol.6, 2992-3006, (2012).
[51] Zhipei Sun, Tawfique Hasan, Felice Torrisi, Daniel Popa, Giulia Privitera, Fengqiu Wang, Francesco Bonaccorso, Denis M. Basko,and Andrea C. Ferrari,“Graphene mode-locked ultrafast laser”,ACS Nano, Vol.4, 803-810, (2009).
[52] Geim, A. K. & Novoselov, K. S., “The rise of graphene”, Nature Mater, Vol.6, 183-191,(2007).
[53] Tuinstra, F. & Koenig, J. L., “Raman spectrum of graphite”,J. Chem. Phys, Vol.53, 1126-1130,(1970).
[54] A.C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M.Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S.Roth, and A.K. Geim, “Raman spectrum of graphene and graphene layers”, Phys.Rev. Lett, Vol.97, 187401/1-187401/4,(2006).
[55] Ferrari, A. C. & Robertson, J., “(eds) Raman spectroscopy in carbons: from nanotubes to diamond”, Phil. Trans. R. Soc. A, Vol.362, 2267-2565, (2004).
[56] Ferrari,A.C, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects”, Solid State Comm, Vol.143, 47-57, (2007).
[57] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B, Vol.61, 14095-14107, (2000).
[58] I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau,“Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers”, Nano Lett, Vol.7, 2645-2649, (2007).
[59] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake,M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M.I. Katsnelson,A. K. Geim, K. S. Novoselov, “Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane”, Science,Vol.323, 610-613, (2009).
[60] A. Das, s. Pisana, b. Chakraborty, s. Piscanec, s. K. Saha, u.V.Waghmare, k. S. Novoselov, h. R. Krishnamurthy, a. K. Geim, a. C.Ferrari and a. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”,nanotechnology, Vol.3, 210-215, (2008).
[61] Ivan Vlassiouk, Murari Regmi, Pasquale Fulvio, Sheng Dai Panos Datskos, Gyula Eres, and Sergei Smirnov, “Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene”, ACS Nano, Vol.5, 6069-6076, ( 2011).
[62] Cheng-Wen Huang, Hsing-Ying Lin, Chen-Han Huang, Kai-Hong Lo,Yu-Chung Chang, Chih-Yi Liu, Chen-Hao Wu, Yonhua Tzeng, and Hsiang-Chen Chui, “Fluorescence quenching due to sliver nanoparticles covered by graphene and hydrogen-terminated graphene”, APPLIED PHYSICS LETTERS, Vol.102,
053113/1~053113/4,(2013).