簡易檢索 / 詳目顯示

研究生: 葉貴誠
Yeh, Kuei-Cheng
論文名稱: 直流磁控濺鍍添加鈦金屬元素對碳氮鍍層機械性質及磨潤性質之影響
Effect of Titanium Addition on Mechanical and Tribological Properties of Carbon Nitride Coating Prepared by DC Magnetron Sputtering
指導教授: 蘇演良
Su, Yen-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 138
中文關鍵詞: 磁控濺鍍碳氮鍍膜(a-CNx)磨潤性質耐蝕性
外文關鍵詞: Magnetron Sputtering, Amorphous Carbon Nitride(a-CNx), Titanium, Tribology, Corrosion resistance
相關次數: 點閱:101下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用非平衡磁控濺鍍在高速鋼以及矽晶片上濺鍍含鈦金屬之碳氮鍍膜,並探討鍍層的機械性質、磨潤性質、耐腐蝕性以及車削與鑽削等應用層面。
    實驗主要分為兩個階段:第一階段為在相同濺鍍參數下探討不同靶材位置配置對鍍層的影響;第二階段為添加不同比例鈦金屬於碳氮鍍層中,以分析不同鈦含量對碳氮鍍層的影響,最後將第二階段磨潤性質最佳之鍍層濺鍍於捨棄式車刀刀片以及微鑽針上,並進行乾車削以及鑽削印刷電路板實驗,以評估其在工業上的應用表現。
    實驗結果所得到一系列含鈦之碳氮鍍膜,其鈦含量介於0~24%之間,硬度則在12.9~15.6GPa之間,其中可以發現隨著鈦含量增加至14%以後開始產生柱狀晶結構,但鍍層的附著性也逐漸下降,其中含鈦量7.5%的鍍層(CN-Ti-1.0A)在重負荷(1000g)條件下有最低的摩擦係數以及磨耗率,分別為0.13及0.15(10-6 mm3/Nm),抗磨耗性優於純碳氮鍍層,並將此鍍層濺鍍於車刀以及鑽針上,在車刀部分,負切邊角條件下能有效降低刀腹磨耗達35%,而正切邊角則降低27%,在微鑽針(ψ=0.02mm)部份,刀腹及刀角磨耗量可減少達24.5%以及28%,此外所有鍍層在電化學實驗中,其耐蝕性皆較原材明顯提升。

    This thesis studies the mechanical and tribological properties of Titanium-doped carbon nitride coating deposited by unbalanced DC magnetron sputtering using nitrogen-argon mixture gas and graphite as carbon source. In this study, Ti-doped carbon nitride coating are deposited on HSS and Si wafer with different target configuration and current of Ti target. This investigate has two stages, first we change the configuration of target position, second we change the current of Ti target (0~2.0A).
    We get a series of Ti-doped carbon nitride coatings which contain 0~24% Titanium and have 12.9~15.6GPa hardness. The results show that the indentation adhesion decreases with increasing titanium. The coatings of 7% Titanium content (CN-Ti-1.0A) showed the lowest friction coefficient (0.13) and wear rate (0.15 10-6mm3/Nm) in pin-on-disk test (Load=1000g). These result significantly better than pure carbon nitrogen coating. In addition, we choose the best anti-wear performance of the samples (CN-Ti-1.0A) to do the turning cutting test and the micron-drilling test. In the turning cutting test section, under the conditions of the negative tool cutting edge angle condition, the coatings of 7% Titanium content reduced 35% flank wear of turning inserts. In the drilling(ψ=0.02mm) test, this coating reduced 24.5% flank wear and 28% corner wear of micro-drillers. Besides, all of coatings (CN-Ti) have obvious promotion of corrosion resistance.

    口試合格證明 I 摘要 II 英文延伸摘要 III 誌謝 XV 總目錄 XVI 附錄目錄 XVIII 表目錄 XIX 圖目錄 XX 第一章 緒論 1 第二章 理論探討與文獻回顧 2 2-1 非平衡磁控濺鍍特點 2 2-2 碳氮鍍膜中介層性質 2 2-3 碳氮鍍膜性質 2 2-4 碳氮鍍膜添加金屬元素對硬度以及抗磨耗性影響 3 2-5 碳氮鍍膜添加金屬元素對耐蝕性以及抗氧化性影響 3 2-6 小結 3 第三章 實驗方法與步驟 4 3-1 實驗目的 4 3-2 實驗流程 4 3-3 鍍膜濺鍍流層以及實驗步驟 7 3-3-1 鍍層參數與鍍膜流程 7 3-3-2 底材成份 11 3-3-3 薄膜結構分析 11 3-3-4 薄膜成分分析 12 3-3-5 表面粗糙度分析 13 3-3-6 硬度試驗 14 3-3-7 附著性試驗 15 3-3-8 磨耗實驗 16 3-3-9 車刀磨耗實驗 17 3-3-10 PCB微鑽削實驗 20 3-3-11 電化學腐蝕實驗 23 3-3-12 高溫氧化實驗 23 3-3-13 實驗設備 24 第四章 實驗結果與討論 26 4-1 第一階段:改變靶材位置對CN-Ti鍍層影響 26 4-1-1 成分分析 26 4-1-2 結構分析 27 4-1-3 薄膜SEM斷面 28 4-1-4 機械性質分析 29 4-1-5 磨耗分析 31 4-1-6 小結 34 4-2 第二階段:改變鈦靶電流對CN-Ti鍍層影響 35 4-2-1 鍍層成份分析 35 4-2-2 結構分析 35 4-2-3 薄膜SEM斷面 37 4-2-4 機械性質分析 39 4-2-5 磨耗分析 43 4-3 鍍膜對車刀磨耗性影響 47 4-4 鍍膜對微鑽針磨耗性影響 52 4-5 電化學腐蝕實驗 57 4-6 高溫氧化實驗 60 第五章 結論 62 第六章 未來展望與建議 64 參考文獻 65

    [1] 宋健瑋,“鎢-鋁鍍膜之耐氧化性與磨潤性質研究”,國立成功大學機械工程學系,碩士論文,民國102年。
    [2] L.C. Chen, D.M. Bhusari, C.Y. Yang, et al., “Si-containing crystalline carbon nitride derived from microwave plasma-enhanced chemical vapor deposition” , Thin Solid Films, 303 (1997) 66.
    [3] A. Leonhardt, H. Gruger, D. Selbmann, B. Arnold, J. Thomas, “Preparation of CNx phases using plasma-assisted and hot filament chemical vapor deposition” ,Thin Solid Films, 332 (1998) 69.
    [4] J.Takadoum, J.Y. Rauch, J.M. Cattenot, N. Martin, “Comparative study of mechanical and tribological properties of CNx and DLC films deposited by PECVD technique” , Surf. Coat. Technol, 174-175 (2003) 427-433.
    [5] 黃越,“使用氣體碳源鍍鉻碳氮鍍膜之機械性質與磨潤性質研究”,國立成功大學機械工程學系,碩士論文,民國104年。
    [6] Y.S. Park, J.H. Boo, B. Houg, “The effects of annealing temperature on characteristics of UBMS sputtered CNx films for protective coatings”, Mater. Res. Bull, 47 (2012) 2776-2779.
    [7] Y.S. Park, H.S. Myung, J.G. Han, B. Hong, “Characterization of CNx thin films prepared by close field unbalanced magnetron sputtering” ,Thin Solid Films ,475 (2005) 298-302.
    [8] W.T. Zheng, J.H.Guo, H. Sjoestroem, J.E. Sundgren, “The Effect of Substrate Temperature on the Structure and Hardness of Magnetron Sputtering Deposited Carbon Nitride Films”, Phys. Status Solidi (A), 172 (1999) 373.
    [9] H. Bker, “Binary alloy phase diagrams, in: Alloy Phase Diagram”, ASM Handbook Vol. 3, American Society for Metals, Materials Park, OH, 1992, p. 2.110、198.
    [10] 許嘉睿,“碳氮鍍膜添加鎢之機械性質與磨潤性質研究”,國立成功大學機械工程學系,碩士論文,民國103年。
    [11] 吳憲龍,“摻雜鉻金屬元素對碳氮鍍層之磨潤性質及耐蝕性之影響”,國立成功大學機械工程學系,碩士論文,民國104年。
    [12] 洪尚賢,“碳氮鍍膜添加鋯之機械性質與磨潤性質研究”,國立成功大學機械工程學系,碩士論文,民國104年。
    [13] A.Y. Liu, M.L. Cohen, “Prediction of New Low Compressibility Solids, Science”, 245 (1989) 841-842.
    [14] A.Y. Liu, M.L. Cohen, “Structural-Properties and Electronic-Structure of Low-Compressibility Materials - Beta-Si3n4 and Hypothetical Beta-C3N4”, Phys. Rev, B41 (1990) 10727.
    [15] D. Liu, G. Benstetter, E. Lodermeier, I. Akula, I. Dudarchyk, Y. Liu, T. Ma, “SPM investigation of diamond-like carbon and carbon nitride films”, Surf. Coat.Technol, 172 (2003) 194.
    [16] X.L. Peng, Z.H. Baber, T.W. “Clyne, Surface roughness of diamond-like carbon films prepared using various techniques”, Surf. Coat. Technol, 138 (2001) 23.
    [17] K. Ogata, J.F.D. Chubaci, F. Fujimoto, “Properties of carbon nitride films with composition ratio C/N= 0.5–3.0 prepared by the ion and vapor deposition method”, J. Appl. Phys, 76 (1994) 3791.
    [18] A. Bousetta, M. Lu, A. Bensaoula, “Physical properties of thin carbon nitride films deposited by electron cyclotron resonance assisted vapor deposition”, J. Vac. Sci. Technol, A 13 (1995) 1639.
    [19] D. Li, S. Lopez, Y.W. Chung, M.S. Wong, W.D. Sproul, “Ionized magnetron sputter deposition of amorphous carbon nitride thin films”, J. Vac. Sci”. Technol, A 13 (1995) 1063.
    [20] A.K.M.S. Chowdhury, D.C. Cameron, M.S.J. Hashmi, M.J. Gregg, “Evidence for continuous areas of crystalline beta-C3N4 in sputter-deposited thin films”, J. Mater. Res, 14 (1999) 2359-2363.
    [21] T.-A. Yeh, C.-L. Lin, J.M. Sivertsen, J.H. Judy, “Durability and structure of rf sputtered carbon & ndash , nitrogen thin film overcoats on rigid disks of magnetic thin film media”, IEEE Trans. Magn. 27 (6) (1991) 5163.
    [22] A.K.M.S. Chowdhury, D.C. Cameron, M.S.J. Hashmi, A. Kumar, Y.-W. Chung, R.W.J. Chia (Eds.), “Hard Coatings Based on Borides, Carbides and Nitrides, The Minerals, Metals and Materials Research Society, Warrendale”, PA, 1998, p. 61.
    [23] M.Y. Chen, X. Lin, V.P. Dravid, Y.W. Chung, M.S. Wong, W.D. Sproul, “Synthesis and Tribological Properties of Carbon Nitride as a Novel Superhard Coating and Solid Lubricant”, Tribology Trans, 36 (3) (1993) 491.
    [24] Sam Zhang, Yongqing Fu, Hejun Du, X.T. Zeng, Y.C. Liu, “Magnetron sputtering of nanocomposite (Ti,Cr)CN/DLC coatings” ,Surface and Coatings Technology, 162 (2002) 42–48.
    [25] A. Cavaleiro, B. Trindade, M.T. Vieira, “ Influence of Ti addition on the properties of W–Ti–CyN sputtered films”, Surface and Coatings Technology, 174 –175 (2003) 68-75.
    [26] B. Warcholinski, A. Gilewicz, Z. Kuklinski, P. Myslinski, “Arc-evaporated CrN and CrCN coatings”, Vacuum, 83 (2009) 715-718.
    [27] D. Martinez-Martinez, C. Lopez-Cartes, A. Justo, A. Fernandez, J.C. Sachez-Lopez, “Self-lubricating Ti–C–N nanocomposite coatings prepared by double magnetron sputtering”, Solid State Sciences ,11 (2009) 660-670.
    [28] D. Martinez-Martinez, J.C. Sachez-Loez, T.C. Rojas A. “Fernadez, P. Eaton, M. Belin, Structural and microtribological studies of Ti–C–N based nanocomposite coatings prepared by reactive sputtering”, Thin Solid Films, 472 (2005) 64- 70.
    [29] V. Braic, M. Braic, M. Balaceanu, A. Vladescu, C.N. Zoita, I. Titorencu, V. Jinga, “(Zr , Ti)CN coatings as potential candidates for biomedical applications”, Surface & Coatings Technology, 206 (2011) 604-609.
    [30] A.A. Onoprienko, V.I. Ivashchenkoa, S.N. Dub, O.Yu. “Khyzhuna, Microstructure and mechanical properties of hard Ti-Si-C-N films deposited by dc magnetron sputtering of multicomponent Ti/C/Si target”, I.I. Timofeev, 205(2011)5068-5072.
    [31] D.G. Liu, Y.J. Pan,W.Q. Bai, J.P. Tuc, “Correlated extended X-ray absorption fine structure and transmission electron microscopy studies the microstructure of low friction Ti–C–N films, Surface & Coatings Technology”, 266 (2015) 88–92.
    [32] J. Takadoum, H. Houmid-Bennani, D. Mairey and Z. Zsiga, “Adhesion Coatings and Wear Resistance of Thin Hard Coatings”, Journal of the European Ceramic Society, 17 (1997) 1929-1932.
    [33] A.A. Voevodin, C. Rebholz, J.M. Schneider, p. Stevenson, A. Matthews, “Wear resistant composite coatings deposited by electron enhanced closed field unbalanced magnetron sputtering”, Surface and Coatings Technology 73 (1995) 185-197.
    [34] P.C. Jindal, A.T. Santhanam, U. Schleinkofer, A.F. Shuster, “Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning”, International Journal of Refractory Metals & Hard Materials 17 (1999) 163-170.
    [35] K.A. Kuptsov, Ph.V. Kiryukhantsev-Korneev, A.N. Sheveyko, D.V. Shtansky, “Comparative study of electrochemical and impact wear behavior of TiCN, TiSiCN, TiCrSiCN and TiAlSiCN coatings”, Surface & Coatings Technology 216 (2013) 273–281.
    [36] T. Polcara, T. Kubartb, R. Nova´kb, L. Kopecky´, P. Siroky´ d, “Comparison of tribological behaviour of TiN, TiCN and CrN at elevated temperatures”, Surface & Coatings Technology 193 (2005) 192– 199.
    [37] 楊宗瑋,“生醫級Ti6Al4V合金與316L不鏽鋼晶表面處理後的電化學反應、生物相容性和磨耗性質之研究”,國立成功大學機械工程學系,碩士論文,民國102年。
    [38] T. Arai “Evaluation of adhesion strength of thin hard coatings”, Thin Solid Films 154 (1987) 387-401.
    [39] Masao Kamiyaa, Hideto Tanouea, Hirofumi Takikawaa, Makoto Takic,Yushi Hasegawac, Masao Kumagai, “Preparation of various DLC films by T-shaped filtered arc depositionand the effect of heat treatment on film properties”, Vacuum 83 (2009) 510–514.
    [40] “車削應用指南”,Sandvik, 2007 ,PP. 6.
    [41] 張文銓,“鎢碳鍍膜之機械性質和磨潤性能研究“,國立成功大學機械工程學系,碩士論文,民國101年。
    [42] A. Richter, H.-J. Scheibe, W. Pompe, K.-W. Brzezinka, I. Mühling, “About the structure and bonding of laser generated carbon films by raman and electron energy loss spectroscopy”, Journal of Non-Crystalline Solids 88(1986)131-144.

    下載圖示 校內:2018-07-01公開
    校外:2018-07-01公開
    QR CODE