| 研究生: |
李豪嶧 Li, Hao-Yi |
|---|---|
| 論文名稱: |
探討Nucleolin在肺癌形成中所扮演的角色 To Study the Role of Nucleolin in Lung Tumorigenesis |
| 指導教授: |
洪建中
Hung, Jan-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | Nucleolin 、mRNA穩定性 、HDAC11 、片段化nucleolin 、肺癌 |
| 外文關鍵詞: | Nucleolin, mRNA stability, HDAC11, cleaved nucleolin, lung cancer |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Nucleolin在細胞具有許多的功能,包含了調控細胞增生、細胞凋亡及mRNA的穩定性等。先前的研究已經指出nucleolin會在腫瘤細胞中大量表現,而我們也在纖維母細胞IMR90及CL系列的肺癌細胞中看到同樣的現象。在實驗室先前的研究發現到nucleolin會結合到許多基因的3-UTR上,導致mRNA穩定性增加的情形。而在本篇論文,我們發現到在invasive能力比較強的CL1-1與CL1-0的比較之下,c-nucleolin (cleaved nucleolin),尤其是nucleolin(70kDa)及nucleolin(55kDa)皆有顯著性的增加,但是nucleolin(wt)則沒有太大的差異。根據這個結果,我們就假設c-nucleolin會參與在肺癌細胞metastasis的過程當中。 為了證實這個假說,首先我們先找出nucleolin(55kDa)為nucleolin第270到710個胺基酸,並且架構nucleolin(270-710)載體。在HeLa細胞內轉染nucleolin(270-710)之後的確可以發現到細胞migratory及invasive的能力有顯著性的增加。而先前的實驗發現到nucleolin(wt)會保護HDAC11 mRNA,而HDAC11被報導為可能的腫瘤抑制基因。於是我們也在HeLa及H1299分別轉染HDAC11後,發現到細胞的migratory及invasive能力下降了。而為了更進一步了解nucleolin(55kDa)與HDAC11之間的關係,我們使用了RNA-IP發現到nucleolin(55kDa)會與nucleolin(wt)競爭結合到HDAC11的mRNA,並且導致HDAC11的表現量下降。綜合以上結果,nucleolin在腫瘤生成的早期就會開始大量累積,促使細胞增生;而當腫瘤持續惡化時,nucleolin就會被切割形成c-nucleolin,並且促使細胞轉移的現象。
Nucleolin has multiple functions such as anti-apoptosis and regulation of mRNA stability. Previous studies demonstrate that nucleolin is overexpression in tumor cells. Indeed, we also observed that nucleolin in IMR90, which is fibroblast less than that in CL series lung cancer cell line. Our previous study indicated that several important genes could be up-regulated by increasing their RNA stability through recruitment of nucleolin to the 3-UTR. In this study, we found that the level of nucleolin cleavage form in CL1-0 is less than that in CL1-1, whose invasive ability is stronger than CL1-0, but no significant difference in full-length nucleolin. According to these data, we hypothesize that nucleolin cleavage form might be involved in metastasis of lung tumor. To clarify the hypothesis, we identified one of the nucleolin cleavage forms, which is 55kDa. To determine the functional role of truncated nucleolin, the migratory and invasive ability of HeLa cells overexpressing the truncated nucleolin were analyzed. Our data indicated that both of cell migration and invasion were enhanced by truncated nucleolin significantly. To further investigate the mechanism on how full-length and truncated nucleolin modulate tumor cell metastasis activity, we used RNA-IP to study the recruitment of full-length and truncated nucleolins, and found that truncated nucleolin could compete the binding site of 3-UTR with full-length nucleolin to destabilize HDAC11 (Histone deacetylase 11) mRNA. In previous study we identified several novel genes were protected by nucleolin, including HDAC11. However, the function of HDAC11 in cancer is not well studied. Thus, we investigated whether truncated nucleolin-regulated metastasis is mediated by HDAC11. We found that the migration was decreased with transfection of increasing doses of HDAC11. Taken together, at early stage of tumor progression, full-length nucleolin accumulation contributes to cell proliferation. As the tumor progression to late stage, nucleolin was cleavage to be of truncated form to facilitate the metastasis activity. These data highlight the importance of nucleolin during tumorigenesis.
Angelov, D., Bondarenko, V. A., Almagro, S., Menoni, H., Mongelard, F., Hans, F., Mietton, F., Studitsky, V. M., Hamiche, A., Dimitrov, S., and Bouvet, P. (2006). Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J 25, 1669-1679.
Bates, S., Phillips, A. C., Clark, P. A., Stott, F., Peters, G., Ludwig, R. L., and Vousden, K. H. (1998). p14ARF links the tumour suppressors RB and p53. Nature 395, 124-125.
Bell, D. W., Gore, I., Okimoto, R. A., Godin-Heymann, N., Sordella, R., Mulloy, R., Sharma, S. V., Brannigan, B. W., Mohapatra, G., Settleman, J., and Haber, D. A. (2005). Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet 37, 1315-1316.
Bremnes, R. M., Veve, R., Hirsch, F. R., and Franklin, W. A. (2002). The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 36, 115-124.
Christian, S., Pilch, J., Akerman, M. E., Porkka, K., Laakkonen, P., and Ruoslahti, E. (2003). Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163, 871-878.
Chu, Y. W., Yang, P. C., Yang, S. C., Shyu, Y. C., Hendrix, M. J., Wu, R., and Wu, C. W. (1997). Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17, 353-360.
de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., and van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370, 737-749.
Fahling, M., Steege, A., Perlewitz, A., Nafz, B., Mrowka, R., Persson, P. B., and Thiele, B. J. (2005). Role of nucleolin in posttranscriptional control of MMP-9 expression. Biochim Biophys Acta 1731, 32-40.
Gao, L., Cueto, M. A., Asselbergs, F., and Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277, 25748-25755.
Georgopoulos, K. (2009). From immunity to tolerance through HDAC. Nat Immunol 10, 13-14.
Ginisty, H., Sicard, H., Roger, B., and Bouvet, P. (1999). Structure and functions of nucleolin. J Cell Sci 112 ( Pt 6), 761-772.
Herbst, R. S., Heymach, J. V., and Lippman, S. M. (2008). Lung cancer. N Engl J Med 359, 1367-1380.
Hwang, S. J., Cheng, L. S., Lozano, G., Amos, C. I., Gu, X., and Strong, L. C. (2003). Lung cancer risk in germline p53 mutation carriers: association between an inherited cancer predisposition, cigarette smoking, and cancer risk. Hum Genet 113, 238-243.
Inder, K. L., Hill, M. M., and Hancock, J. F. (2010). Nucleophosmin and nucleolin regulate K-Ras signaling. Commun Integr Biol 3, 188-190.
Ishimaru, D., Zuraw, L., Ramalingam, S., Sengupta, T. K., Bandyopadhyay, S., Reuben, A., Fernandes, D. J., and Spicer, E. K. (2010). Mechanism of regulation of bcl-2 mRNA by nucleolin and A+U-rich element-binding factor 1 (AUF1). J Biol Chem 285, 27182-27191.
Kito, S., Shimizu, K., Okamura, H., Yoshida, K., Morimoto, H., Fujita, M., Morimoto, Y., Ohba, T., and Haneji, T. (2003). Cleavage of nucleolin and argyrophilic nucleolar organizer region associated proteins in apoptosis-induced cells. Biochem Biophys Res Commun 300, 950-956.
Lee, Y. H., Mungunsukh, O., Tutino, R. L., Marquez, A. P., and Day, R. M. (2010). Angiotensin-II-induced apoptosis requires regulation of nucleolin and Bcl-xL by SHP-2 in primary lung endothelial cells. J Cell Sci 123, 1634-1643.
Lindberg, D., Akerstrom, G., and Westin, G. (2007). Mutational analyses of WNT7A and HDAC11 as candidate tumour suppressor genes in sporadic malignant pancreatic endocrine tumours. Clin Endocrinol (Oxf) 66, 110-114.
Liu, J., Tsao, M. S., Pagura, M., Shalinsky, D. R., Khoka, R., Fata, J., and Johnston, M. R. (2003). Early combined treatment with carboplatin and the MMP inhibitor, prinomastat, prolongs survival and reduces systemic metastasis in an aggressive orthotopic lung cancer model. Lung Cancer 42, 335-344.
Mi, Y., Thomas, S. D., Xu, X., Casson, L. K., Miller, D. M., and Bates, P. J. (2003). Apoptosis in leukemia cells is accompanied by alterations in the levels and localization of nucleolin. J Biol Chem 278, 8572-8579.
Mongelard, F., and Bouvet, P. (2007). Nucleolin: a multiFACeTed protein. Trends Cell Biol 17, 80-86.
Orrick, L. R., Olson, M. O., and Busch, H. (1973). Comparison of nucleolar proteins of normal rat liver and Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A 70, 1316-1320.
Otake, Y., Soundararajan, S., Sengupta, T. K., Kio, E. A., Smith, J. C., Pineda-Roman, M., Stuart, R. K., Spicer, E. K., and Fernandes, D. J. (2007). Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109, 3069-3075.
Pasternack, M. S., Bleier, K. J., and McInerney, T. N. (1991). Granzyme A binding to target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro. J Biol Chem 266, 14703-14708.
Pich, A., Chiusa, L., and Margaria, E. (2000). Prognostic relevance of AgNORs in tumor pathology. Micron 31, 133-141.
Pollan, M., Varela, G., Torres, A., de la Torre, M., Ludena, M. D., Ortega, M. D., Pac, J., Freixenet, J., Gomez, G., Sebastian, F., et al. (2003). Clinical value of p53, c-erbB-2, CEA and CA125 regarding relapse, metastasis and death in resectable non-small cell lung cancer. Int J Cancer 107, 781-790.
Sengupta, T. K., Bandyopadhyay, S., Fernandes, D. J., and Spicer, E. K. (2004). Identification of nucleolin as an AU-rich element binding protein involved in bcl-2 mRNA stabilization. J Biol Chem 279, 10855-10863.
Shigematsu, H., Takahashi, T., Nomura, M., Majmudar, K., Suzuki, M., Lee, H., Wistuba, II, Fong, K. M., Toyooka, S., Shimizu, N., et al. (2005). Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 65, 1642-1646.
Society, A. C. (2010). Cancer Facts & Figures 2010. Atlanta: American Cancer Society.
Soundararajan, S., Chen, W., Spicer, E. K., Courtenay-Luck, N., and Fernandes, D. J. (2008). The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68, 2358-2365.
Spira, A., and Ettinger, D. S. (2004). Multidisciplinary management of lung cancer. N Engl J Med 350, 379-392.
Srivastava, M., and Pollard, H. B. (1999). Molecular dissection of nucleolin's role in growth and cell proliferation: new insights. FASEB J 13, 1911-1922.
Subramanian, J., and Govindan, R. (2007). Lung cancer in never smokers: a review. J Clin Oncol 25, 561-570.
Takagi, M., Absalon, M. J., McLure, K. G., and Kastan, M. B. (2005). Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123, 49-63.
Tang, X., Varella-Garcia, M., Xavier, A. C., Massarelli, E., Ozburn, N., Moran, C., and Wistuba, II (2008). Epidermal growth factor receptor abnormalities in the pathogenesis and progression of lung adenocarcinomas. Cancer Prev Res (Phila) 1, 192-200.
Tran, A. D., Marmo, T. P., Salam, A. A., Che, S., Finkelstein, E., Kabarriti, R., Xenias, H. S., Mazitschek, R., Hubbert, C., Kawaguchi, Y., et al. (2007). HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J Cell Sci 120, 1469-1479.
Villagra, A., Cheng, F., Wang, H. W., Suarez, I., Glozak, M., Maurin, M., Nguyen, D., Wright, K. L., Atadja, P. W., Bhalla, K., et al. (2009). The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10, 92-100.
Wang, S. A., Li, H. Y., Chang, W. C., and Hung, J. J. (revised). Heat Shock Protein 90 Stabilizes Nucleolin to Increase mRNA Stability in Mitosis. The Journal of Biological Chemistry.
Xu, J., Wang, K., Zhang, X., Qiu, Y., Huang, D., Li, W., Xiao, X., and Tian, Y. (2010). HSP70: a promising target for laryngeal carcinoma radiaotherapy by inhibiting cleavage and degradation of nucleolin. J Exp Clin Cancer Res 29, 106.
Zeng, L., O'Connor, C., Zhang, J., Kaplan, A. M., and Cohen, D. A. (2010). IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines. Cytokine 49, 294-302.
Zhang, J., Tsaprailis, G., and Bowden, G. T. (2008). Nucleolin stabilizes Bcl-X L messenger RNA in response to UVA irradiation. Cancer Res 68, 1046-1054.