簡易檢索 / 詳目顯示

研究生: 張晉國
Chang, Chin-Kuo
論文名稱: 砷化鎵表面-本質- N+摻雜之兆赫輻射機制與半導體的臨界電場
Mechanism of Terahertz Radiation and the Critical Electric Field of GaAs SIN+ Structures of Photoconductive Semiconductors
指導教授: 黃正雄
Hwang, Jenn-Shyong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 50
中文關鍵詞: 臨界電場砷化鎵兆赫輻射
外文關鍵詞: critical electric field, Gallium arsenide, terahertz radiation
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      以飛秒雷射脈衝照射各種半導體塊材表面產生兆赫輻射的三種不同機制分別是光電導過程(the photo-conductivity)、photo-Dember效應以及光整流(the optical rectification)。本論文利用自由空間電光取樣(free space electro-optic sampling, FS-EOS)的方法來量測一系列的砷化鎵表面-本質-N型摻雜(surface intrinsic-N+, SIN+)結構所發出的兆赫輻射。利用這種時域(time-domain)的兆赫輻射光譜,可以直接測量到兆赫波的時域電場。此外,我們也確認在我們的實驗條件下樣品的輻射機制為光電導過程;光電導過程裡,半導體表面發出的兆赫輻射是光激載子受到半導體的表面空乏電場或外加電場加速造成的結果。我們首先使用光調制反射率(photoreflectance, PR)的調制光譜來量測此樣品結構的表面電場。實驗結果顯示,當表面電場低於所謂的“臨界電場”(critical electric field)時,兆赫波電場振幅與表面電場及光激載子數的乘積成正比;當表面電場超過臨界電場時,兆赫波的電場振幅與表面電場無關,僅與光激載子數成正比。此臨界電場為載子漂移速率(drift velocity)達到最大時的電場,它與半導體的Γ和L能谷(valley)之間的能量差有關。

    Abstract
    Terahertz (THz) radiation can be generated from a variety of semiconductors illuminated by femtosecond optical pulses. It is widely believed that three different mechanisms result in THz radiation from surface of bulk semiconductors, i.e. the photoconductivity, the photo-Dember effect, and the optical rectification. In this thesis, we use free space electro-optic sampling (FS-EOS) to characterize the THz radiation from a series of GaAs surface intrinsic-N+ (SIN+) structures. By THz time-domain spectroscopic technique we directly measure the electric field of the THz radiation. In addition, the radiation mechanism of the sample under the experiment condition is identified as the photoconductivity. In the photoconductive process, the THz radiation from semiconductor surface is a consequence of the motion of photo-excited carriers accelerated by the local or bias field which may be an external applied field or an internal field from charge depletion layers, Schottkey barriers, strained layers, and p-n junctions of semiconductors. The modulation spectroscopy of photoreflectance (PR) is used to measure the surface electric field of a series of GaAs SIN+ structures with various intrinsic layers, followed immediately by the measurement of the electric field amplitude of the THz radiation. Experimental results indicate that as the surface field is lower than the so called “critical electric field”, the amplitude of THz radiation field is proportional to the product of the surface field and the number of photo-excited carriers. As the surface field exceeds the critical field, the amplitude is independent of the surface field but is proportional to the product of the critical field and the number of the photo-excited carriers. The critical field corresponds to the field at which the drift velocity is maxima in semiconductor and depends on the energy difference between the Γ to L valley of the semiconductor.

    目錄 第一章 緒論............................................1 第二章 光調制反射率的調制光譜學........................5 2-1 理論依據........................................5 2-2 光調制反射率光譜的機制..........................8 2-3 光調制反射率光譜的實驗裝置.....................10 第三章 兆赫輻射的產生機制與電光取樣產生兆赫輻射的偵測系 統.............................................13 3-1 兆赫輻射的產生機制.............................13 3-1-1 光電導過程.....................................15 3-1-2 光整流過程.....................................17 3-1-3 photo-Dember效應...............................20 3-2 兆赫輻射的產生與偵測...........................22 3-2-1 兆赫輻射光譜產生與偵測的實驗裝置...............25 3-2-2 自由空間電光取樣方法與原理.....................30 第四章 砷化鎵 SIN+結構的兆赫輻射機制及性質之研究......33 4-1 樣品的準備與實驗條件...........................33 4-2 樣品的輻射機制.................................34 4-3 實驗的理論依據.................................35 4-4 實驗結果與討論.................................38 第五章 結論與展望....................................47 參考文獻................................................48

    參考文獻

    [1] S. Luryi, J. Xu, and A. Zaslasky (Eds.): Future Trends in Micro-
    electronics (Wiley, New York, 1999)
    [2] A. Othonos, J. Appl. Phys. 83, 1789 (1998)
    [3] A. J. DeMaria, C. M. Ferrar, and G. E. Danielson, Jr, Appl. Phys. Lett. 8,
    22 (1966)
    [4] R. L. Fork, B. I. Greene, and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981)
    [5] R. L. Fork, C.H. Brito Cruz, P. C. Becker, and C. V. Shank, Opt. Lett. 12,
    483 (1987)
    [6] C. Zandonella, Nature 424, 721 (2003)
    [7] B. B. Hu and M. C. Nuss, Opt. Lett. 20, 1716 (1995)
    [8] H. Zhong, J. Xu, T. Yuan, R. Reighter, E. Madaras, and X. C. Zhang, IEEE
    Sensors Journal, 5, 203 (2005)
    [9] M. Walther, “Modern spectroscopy on biological molecules: Structure and
    bonding investigated by THz time-domain spectroscopy and transient phase
    gating spectroscopy”, Ph.D. Thesis, University of Freiburg (2003)
    [10] B. M. Fischer, M. Walther, and P. Uhd Jepsen, Phys. Med. Biol. 47, 3807
    (2002)
    [11] X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett.
    56, 1011 (1990)
    [12] M. Cardona: Modulation Spectroscopy (Academic Press, New York, 1969)
    [13] D. E. Aspnes, in M. Balkanski (ed.), Handbook on Semiconductors, Vol. 2,
    North-Holland, New York, 1980, pp109-154
    [14] H. Shen and M. Dutta, J. Appl. Phys. 78, 2151 (1995)
    [15] D. E. Aspnes, Phys. Rev. B 10, 4228 (1974)
    [16] T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Tsai, D. G. Liu, and C. P. Lee, J.
    Appl. Phys. 72, 1065 (1992)
    [17] D. E. Aspnes and A. A. Studna, Phys. Rev. B 7, 4605 (1973)
    [18] H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum.
    58, 1429 (1987)
    [19] D. J. Griffiths: Introduction to Electrodynamics, 3rd edn (Prentice Hall,
    New Jersey, 1999)
    [20] X. C. Zhang and D. H. Auston, J. Appl. Phys. 71, 326 (1991)
    [21] B. B. Hu, X. C. Zhang, and D. H. Auston, Phys. Rev. Lett. 67, 2709 (1991)
    [22] Y. Yafet and E. Yablonovitch, Phys. Rev. B 43, 12480 (1991)
    [23] P. Lorrin, D. R. Corson, and F. Lorrain: Electromagnetic Fields and Wave,
    3rd edn (W. H. Freeman and Company, New York, 1988)
    [24] M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys. Rev. Lett. 9,
    446 (1962)
    [25] S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J.
    Levi, Phys. Rev. Lett. 68, 102 (1992).
    [26] N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965)
    [27] X. C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, Phys. Rev. Lett. 69,
    2303 (1992)
    [28] A. Rice, Y. Jin, X. F. Ma, and X. C. Zhang, Appl. Phys. Lett. 64, 1324
    (1994)
    [29] H. Dember, Phys. Z. 32, 554 (1931)
    [30] H. Dember, Phys. Z. 32, 856 (1931)
    [31] H. Dember, Phys. Z. 33, 207 (1932)
    [32] S. Kono, P. Gu, M. Tani, and K. Sakai, Appl. Phys. B 71, 901 (2000)
    [33] P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, J. Appl. Phys. 91,
    5533 (2002)
    [34] J. N. Heyman, N. Coates, A. Reinhardt, and G. Strasser, Appl. Phys. Lett.
    83, 5476 (2003)
    [35] D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, Opt. Lett. 18,
    290 (1993)
    [36] M. Joffre, A. Bonvalet, A. Migus, and J.-L. Martin, Opt. Lett. 21, 964
    (1996)
    [37] P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. QE-
    24, 255 (1988)
    [38] B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, Appl.
    Phys. Lett. 56, 886 (1990)
    [39] Q. Wu and X. C. Zhang, Appl. Phys. Lett. 67, 3523 (1995)
    [40] Q. Wu and X. C. Zhang, Appl. Phys. Lett. 68, 1604 (1996)
    [41] Q. Wu and X. C. Zhang, Appl. Phys. Lett. 68, 2924 (1996)
    [42] Q. Wu and X. C. Zhang, Appl. Phys. Lett. 71, 1285 (1997)
    [43] S. Kono, M. Tani, P. Gu, and K. Sakai, Appl. Phys. Lett. 77, 4104 (2000)
    [44] S.-G. Park, M. R. Melloch, and A. M. Weiner, Appl. Phys. Lett. 73, 3184
    (1998)
    [45] R. D. Guenther: Modern Optics (Wiley, New York, 1990)
    [46] C. Kübler, R. Huber, S. Tübel, and A. Leitenstofer, Appl. Phys. Lett. 85,
    3360 (2004)
    [47] A. Yariv: Optical Electronics in Modern Communications, 5th edn (Oxford
    University Press, London, 1996)
    [48] P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, J.
    Opt. Soc. Am. B 18, 313 (2001)
    [49] C. Van Hoof, K. Deneffe, J. DeBoeck, D. J. Arent, and G. Borghs, Appl.
    Phys. Lett. 54, 608 (1989)
    [50] M. Hecht, Phys. Rev. B 41, 7910 (1990)
    [51] M. Hecht, J. Vac. Sci. Technol. B 8, 1018 (1990)
    [52] D. A. Neamen: Semiconductor Physics and Devices, 3rd edn (McGraw-Hill,
    New York, 2002)
    [53] A. Leitenstofer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, Phys.
    Rev. Lett. 82, 5140 (1999)
    [54] A. Leitenstofer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, Phys.
    Rev. B 61, 16642 (2000)
    [55] M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H.
    Linfield, J. Appl. Phys. 91, 2104 (2002)
    [56] M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H.
    Linfield, Phys. Rev. B 65, 165301 (2002)
    [57] M. B. Johnston, A. Corchia, A. Dowd, E. H. Linfield, A. G. Davies, R.
    McLaughlin, D. D. Arnone, and M. Pepper, Physica E 13, 896 (2002)
    [58] J. Darmo, G. Strasser, T. Müller, R. Bratschitsch, and K. Unterrainer,
    Appl. Phys. Lett. 81, 871 (2002)
    [59] A. M. Sinyukov and L. M. Hayden, Opt. Lett. 27, 55 (2002)
    [60] A. M. Sinyukov, M. R. Leahy, L. M. Hayden, M. Haller, J. Luo, A. K-Y.
    Jen, and L. R. Dalton, Appl. Phys. Lett. 85, 5827 (2004)

    下載圖示 校內:2007-06-26公開
    校外:2007-06-26公開
    QR CODE