簡易檢索 / 詳目顯示

研究生: 許哲嘉
Hsu, Che-Chia
論文名稱: 研究MSP58在調控端粒酶/hTERT和細胞老化中所扮演的角色
Studying the role of MSP58 in regulation of telomerase/hTERT and cellular senescence
指導教授: 林鼎晏
Lin, Ding-Yen
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 123
中文關鍵詞: MSP58細胞老化端粒酶hTERTBrg1TEIF
外文關鍵詞: MSP58, cellular senescence, telomerase, hTERT, Brg1, TEIF
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 58-kDa微小球蛋白(MSP58)在維持細胞功能上扮演很重要的角色,包括轉錄調控、細
    胞增生以及細胞轉型等。而到目前為止,對於MSP58扮演致癌基因的角色仍然需要進
    一步的釐清研究。在我們的研究結果發現,MSP58由小干擾RNA將其基因剔除會導
    致染色體非整倍體和細胞凋亡。而MSP58過度表現時會誘導細胞老化或是轉型主要依
    賴於控制老化過程中p53是否有完整的功能存在。然而,過度表現MSP58在HT1080、
    NIH3T3、人類乳腺表皮細胞株(H184B5F5/M10)以及正常人類雙套纖維母細胞株(Hs68
    和IMR90)會誘導細胞提早老化,主要透過Rb的磷酸化減少、DNA損害活化以及活化
    p53/p21訊息傳遞路徑。更重要的是,MSP58誘導細胞老化,p53是必須存在的。此外,
    利用酵母菌雙雜交篩選找到兩個新穎MSP58交互作用蛋白質,Brg1和TEIF。我們證明
    MSP58、Brg1和p53會形成複合體座落在p21啟動子上並啟動基因轉錄。利用小干擾
    RNA將Brg1或p53基因剔除後會抑制MSP58所調控的老化。除此之外,MSP58也擔任
    一個hTERT轉錄負向調控因子並且抑制TEIF所調控的hTERT轉錄活性、端粒酶活性、
    細胞增生以及腫瘤生成。而MSP58抑制hTERT轉錄主要是透過抑制TEIF和DNA結合
    的能力。利用組織晶片分析MSP58在腫瘤和正常樣品中的表現,結果顯示MSP58在不
    同形態腫瘤中有過度表現和減少表現的情況存在。總結以上的結果,這些研究使我們
    對於MSP58經由不同的交互作用蛋白質去調控細胞老化和端粒酶活性有更深入的了
    解並且也暗示著MSP58可能同時具有致癌和抑癌基因的雙重特性。

    58-kDa microspherule protein (MSP58) plays an important role in a variety of cellular function including transcriptional regulation, cell proliferation and oncogenic transformation. To date, the mechanisms underlying the oncogenic effect of MSP58 remain elusive. In our study, MSP58 silencing by siRNA results in aneuploidy and apoptosis. Forced expression of MSP58 induces either cellular senescence or transformation dependent on the integrity of a senescence program controlled by functional p53. MSP58 overexpression induces premature senescence in HT1080, NIH3T3 cell lines, human mammary epithelial cell line (H184B5F5/M10) and normal human diploid fibroblasts (Hs68 and IMR90) through hypophosporylated Rb, activation of the DNA damage response and upregulation of p53/p21 pathway. Importantly, p53 is required for MSP58-induced premature senescence. Furthermore, novel MSP58-interacting proteins
    were identified by yeast two-hybrid screen, including the Brg1 (Brahma-related gene 1) and TEIF (telomerase transcriptional elements-interacting factor). Notably, MSP58 complex colocalizes with both p53 and Brg1 on the p21 promoter and collaborate to activate p21 gene transcription. Brg1 or p53 knockdown by RNA interferences results in MSP58-mediated senescence bypassed. Additionally, MSP58 serves as a negative regulator of hTERT transcription and suppresses TEIF-induced hTERT transcriptional activity, telomerase activity, cell proliferation and tumor formation. The inhibitory effect
    of MSP58 on hTERT transcription occurred through inhibition of TEIF binding to DNA. Analysis the expression level of MSP58 in tumor and normal samples in tissue microarrays showed that MSP58 was both up-regulated and down-regulated in different types of tumors compared to the normal tissue counterparts. Taken together, these studies provide new
    insights into the role of MSP58 in regulation of cellular proliferation and telomerase
    activity via different interacting proteins and suggest that MSP58 has both oncogenic and
    tumor-suppressive properties.

    (I) Abstract in Chinese I (II) Abstract II (III) Acknowledgements III (IV) Contents IV (V) Figure index VII (VI) Appendix index IX (VII) Abbreviations X (VIII) Introduction 1 1. The regulation of cellular senescence and telomerase activity in cancer development 1 1.1. Cellular senescence and signaling pathway 1 1.2. The role of oncogene-induced senescence in tumor progression 2 1.3. Transcriptional regulation of telomerase 2 2. 58-kDa microsohere protein (MSP58) 3 2.1. The role of MSP58 in transcriptional regulation 3 2.2. The functional roles of MSP58 in cellular transformation and telomerase activity 4 3. Brahma-related gene-1 (Brg1) 4 3.1. SWI/SNF chromatin-remodeling complexes 4 3.2. The role of Brg1 in cell growth and senescence 5 4. Telomerase transcriptional elements-interacting factor (TEIF) 6 4.1. Identification of TEIF using hTERT promoter-based yeast one-hybrid assay 6 4.2. TEIF is a potential oncogene 6 5. Research significances 6 (IX) Materials and methods 8 1. Materials 8 2. Methods 13 2.1. Plasmids Construction and Antibodies 13 2.2. Cell Culture 15 2.3. Transient, Stable Transfection and Retroviral/Lentiviral Transduction 16 2.4. Immunoprecipitation, Western Blotting Analyses, Immunofluorescence 16 2.5. RNA Extraction, Real-Time Reverse Transcriptase (RT) -Polymerase Chain Reaction (PCR) and Luciferase Reporter Assay 17 2.6. Growth Curve, Soft Agar and Focus Assay 18 2.7. Yeast Two-Hybrid Screen and β-Galactosidase Assay 19 2.8. Glutathione S-Transferase (GST) Pull-Down Assay 19 2.9. Telomeric Repeat Amplification Protocol (TRAP) Assay 19 2.10. Chromatin Immunoprecipitation (ChIP) and Re-Chromatin Immunoprecipitation (re-ChIP) Assay 20 2.11. Electrophoretic Mobility Shift Assay (EMSA) 22 2.12. Senescence-Associated β-galactosidase Staining (SA-β-gal) 22 2.13. Matching Normal/Tumor Expression Array and Tissue Immunohistochemical (IHC) Staining 23 2.14. Statistical Analysis 23 (X) Results 24 1. MSP58 is essential for cell viability and controls cell proliferation in a cell-context dependent manner 24 1.1. MSP58 knockdown cells undergo apoptosis 24 1.2. Ectopic MSP58 expression alters cellular morphology, proliferation and transformation in a cell context-dependent manner 25 2. MSP58 is a potential inducer of oncogene-induced senescence triggering DNA damage response-p53/p21 senescence pathway 26 2.1. Ectopic MSP58 expression induces premature senescence 26 2.2. MSP58 regulates cellular senescence through the DNA damage-p53/p21 signaling pathway 28 2.3. MSP58-induced cellular senescence is mediated through a p53-dependent pathway 30 3. BRG1 associates with MSP58 and is required for MSP58-induced senescence 31 3.1. MSP58 interacts with Brg1 in yeast and in vivo 31 3.2. MSP58, Brg1 and p53 form a complex and cooperate to regulate p21 gene transcription 32 3.3. Brg1 is an important mediator of MSP58-induced senescence 32 4. MSP58 expression is heterogenous in human tumors 33 4.1. Expression of MSP58 mRNA in human cancers 33 4.2. Expression of MSP58 protein in human cancers 34 5. MSP58 protein functions as a negative regulator of hTERT transcription 35 5.1. MSP58 regulates hTERT expression 35 5.2. MSP58 represses telomerase activity in telomerase-positive 293T and HT1080 cells 36 6. MSP58 inhibits TEIF-mediated hTERT transactivation and telomerase activity through protein-protein interaction 37 6.1. MSP58 interacts with TEIF in vitro and in vivo. 37 6.2. TEIF-mediated activation of hTERT promoter and telomerase activity is repressed by MSP58 39 7. MSP58 prevents TEIF binding on hTERT promoter 41 7.1. MSP58 does not alter TEIF or hTERT nuclear localization 41 7.2. MSP58 inhibits TEIF DNA-binding activity 42 8. MSP58 inhibits TEIF-mediated promotion of cell proliferation and tumor formation 43 8.1. MSP58 represses TEIF-promoted cell proliferation via S and G2/M cell cycle accumulation 43 8.2. MSP58 antagonizes TEIF-promoted tumor formation 45 (XI) Discussion 46 1. MSP58 may be a potential inducer of oncogene-induced senescence 46 2. Dissection of molecular mechanism of cellular senescence and telomerase activity repression by MSP58 47 3. The effect of MSP58 on cell proliferation and tumorigenesis 50 4. Concluding remarks 54 (XII) References 56 (XIII) Figures 67 (XIV) Appendixes 104 (XV) Publications 120 (XVI) Curriculum vitae 121

    (XII) References
    1. Burrows, A.E., Smogorzewska, A. and Elledge, S.J. Polybromo-associated
    BRG1-associated factor components BRD7 and BAF180 are critical regulators of
    p53 required for induction of replicative senescence. Proceedings of the National
    Academy of Sciences of the United States of America, 107, 14280-14285.
    2. Goldstein, S. (1990) Replicative senescence: the human fibroblast comes of age.
    Science (New York, N.Y, 249, 1129-1133.
    3. Ben-Porath, I. and Weinberg, R.A. (2005) The signals and pathways activating
    cellular senescence. The international journal of biochemistry & cell biology, 37,
    961-976.
    4. Gire, V., Roux, P., Wynford-Thomas, D., Brondello, J.M. and Dulic, V. (2004)
    DNA damage checkpoint kinase Chk2 triggers replicative senescence. The EMBO
    journal, 23, 2554-2563.
    5. d'Adda di Fagagna, F., Reaper, P.M., Clay-Farrace, L., Fiegler, H., Carr, P., Von
    Zglinicki, T., Saretzki, G., Carter, N.P. and Jackson, S.P. (2003) A DNA damage
    checkpoint response in telomere-initiated senescence. Nature, 426, 194-198.
    6. Webley, K., Bond, J.A., Jones, C.J., Blaydes, J.P., Craig, A., Hupp, T. and
    Wynford-Thomas, D. (2000) Posttranslational modifications of p53 in replicative
    senescence overlapping but distinct from those induced by DNA damage.
    Molecular and cellular biology, 20, 2803-2808.
    7. Dyson, N. (1998) The regulation of E2F by pRB-family proteins. Genes &
    development, 12, 2245-2262.
    8. Chen, Z., Trotman, L.C., Shaffer, D., Lin, H.K., Dotan, Z.A., Niki, M., Koutcher,
    J.A., Scher, H.I., Ludwig, T., Gerald, W. et al. (2005) Crucial role of
    p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis.
    Nature, 436, 725-730.
    9. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100, 57-70.
    10. Feldser, D.M. and Greider, C.W. (2007) Short telomeres limit tumor progression in
    vivo by inducing senescence. Cancer cell, 11, 461-469.
    11. Cosme-Blanco, W., Shen, M.F., Lazar, A.J., Pathak, S., Lozano, G., Multani, A.S.
    and Chang, S. (2007) Telomere dysfunction suppresses spontaneous tumorigenesis
    in vivo by initiating p53-dependent cellular senescence. EMBO reports, 8, 497-503.
    12. Christophorou, M.A., Ringshausen, I., Finch, A.J., Swigart, L.B. and Evan, G.I.
    (2006) The pathological response to DNA damage does not contribute to
    p53-mediated tumour suppression. Nature, 443, 214-217.
    13. Bartkova, J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N.,
    57
    Vassiliou, L.V., Kolettas, E., Niforou, K., Zoumpourlis, V.C. et al. (2006)
    Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA
    damage checkpoints. Nature, 444, 633-637.
    14. Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C.,
    Schurra, C., Garre, M., Nuciforo, P.G., Bensimon, A. et al. (2006)
    Oncogene-induced senescence is a DNA damage response triggered by DNA
    hyper-replication. Nature, 444, 638-642.
    15. Funayama, R. and Ishikawa, F. (2007) Cellular senescence and chromatin structure.
    Chromosoma, 116, 431-440.
    16. Artandi, S.E., Chang, S., Lee, S.L., Alson, S., Gottlieb, G.J., Chin, L. and DePinho,
    R.A. (2000) Telomere dysfunction promotes non-reciprocal translocations and
    epithelial cancers in mice. Nature, 406, 641-645.
    17. Ahmed, A. and Tollefsbol, T.O. (2003) Telomerase, telomerase inhibition, and
    cancer. Journal of anti-aging medicine, 6, 315-325.
    18. Kyo, S., Takakura, M., Taira, T., Kanaya, T., Itoh, H., Yutsudo, M., Ariga, H. and
    Inoue, M. (2000) Sp1 cooperates with c-Myc to activate transcription of the human
    telomerase reverse transcriptase gene (hTERT). Nucleic acids research, 28,
    669-677.
    19. Wang, J., Xie, L.Y., Allan, S., Beach, D. and Hannon, G.J. (1998) Myc activates
    telomerase. Genes & development, 12, 1769-1774.
    20. Sagawa, Y., Nishi, H., Isaka, K., Fujito, A. and Takayama, M. (2001) The
    correlation of TERT expression with c-myc expression in cervical cancer. Cancer
    letters, 168, 45-50.
    21. Wu, K.J., Grandori, C., Amacker, M., Simon-Vermot, N., Polack, A., Lingner, J.
    and Dalla-Favera, R. (1999) Direct activation of TERT transcription by c-MYC.
    Nature genetics, 21, 220-224.
    22. Greenberg, R.A., O'Hagan, R.C., Deng, H., Xiao, Q., Hann, S.R., Adams, R.R.,
    Lichtsteiner, S., Chin, L., Morin, G.B. and DePinho, R.A. (1999) Telomerase
    reverse transcriptase gene is a direct target of c-Myc but is not functionally
    equivalent in cellular transformation. Oncogene, 18, 1219-1226.
    23. Kanaya, T., Kyo, S., Hamada, K., Takakura, M., Kitagawa, Y., Harada, H. and
    Inoue, M. (2000) Adenoviral expression of p53 represses telomerase activity
    through down-regulation of human telomerase reverse transcriptase transcription.
    Clinical cancer research : an official journal of the American Association for
    Cancer Research, 6, 1239-1247.
    24. Xu, D., Wang, Q., Gruber, A., Bjorkholm, M., Chen, Z., Zaid, A., Selivanova, G.,
    Peterson, C., Wiman, K.G. and Pisa, P. (2000) Downregulation of telomerase
    58
    reverse transcriptase mRNA expression by wild type p53 in human tumor cells.
    Oncogene, 19, 5123-5133.
    25. Won, J., Yim, J. and Kim, T.K. (2002) Sp1 and Sp3 recruit histone deacetylase to
    repress transcription of human telomerase reverse transcriptase (hTERT) promoter
    in normal human somatic cells. The Journal of biological chemistry, 277,
    38230-38238.
    26. Xu, H.J., Zhou, Y., Ji, W., Perng, G.S., Kruzelock, R., Kong, C.T., Bast, R.C.,
    Mills, G.B., Li, J. and Hu, S.X. (1997) Reexpression of the retinoblastoma protein
    in tumor cells induces senescence and telomerase inhibition. Oncogene, 15,
    2589-2596.
    27. Nguyen, D.C. and Crowe, D.L. (1999) Intact functional domains of the
    retinoblastoma gene product (pRb) are required for downregulation of telomerase
    activity. Biochimica et biophysica acta, 1445, 207-215.
    28. Li, H., Zhao, L.L., Funder, J.W. and Liu, J.P. (1997) Protein phosphatase 2A
    inhibits nuclear telomerase activity in human breast cancer cells. The Journal of
    biological chemistry, 272, 16729-16732.
    29. Kim, J.H., Park, S.M., Kang, M.R., Oh, S.Y., Lee, T.H., Muller, M.T. and Chung,
    I.K. (2005) Ubiquitin ligase MKRN1 modulates telomere length homeostasis
    through a proteolysis of hTERT. Genes & development, 19, 776-781.
    30. Nakayama, J., Tahara, H., Tahara, E., Saito, M., Ito, K., Nakamura, H., Nakanishi,
    T., Tahara, E., Ide, T. and Ishikawa, F. (1998) Telomerase activation by hTRT in
    human normal fibroblasts and hepatocellular carcinomas. Nature genetics, 18,
    65-68.
    31. Liu, Y., Snow, B.E., Hande, M.P., Yeung, D., Erdmann, N.J., Wakeham, A., Itie,
    A., Siderovski, D.P., Lansdorp, P.M., Robinson, M.O. et al. (2000) The telomerase
    reverse transcriptase is limiting and necessary for telomerase function in vivo.
    Current biology : CB, 10, 1459-1462.
    32. Niida, H., Matsumoto, T., Satoh, H., Shiwa, M., Tokutake, Y., Furuichi, Y. and
    Shinkai, Y. (1998) Severe growth defect in mouse cells lacking the telomerase
    RNA component. Nature genetics, 19, 203-206.
    33. Koyanagi, Y., Kobayashi, D., Yajima, T., Asanuma, K., Kimura, T., Sato, T., Kida,
    T., Yagihashi, A., Kameshima, H. and Watanabe, N. (2000) Telomerase activity is
    down regulated via decreases in hTERT mRNA but not TEP1 mRNA or hTERC
    during the differentiation of leukemic cells. Anticancer research, 20, 773-778.
    34. Blackburn, E.H., Greider, C.W. and Szostak, J.W. (2006) Telomeres and
    telomerase: the path from maize, Tetrahymena and yeast to human cancer and
    aging. Nature medicine, 12, 1133-1138.
    59
    35. Ren, Y., Busch, R.K., Perlaky, L. and Busch, H. (1998) The 58-kDa microspherule
    protein (MSP58), a nucleolar protein, interacts with nucleolar protein p120.
    European journal of biochemistry / FEBS, 253, 734-742.
    36. Durocher, D. and Jackson, S.P. (2002) The FHA domain. FEBS letters, 513, 58-66.
    37. Davidovic, L., Bechara, E., Gravel, M., Jaglin, X.H., Tremblay, S., Sik, A., Bardoni,
    B. and Khandjian, E.W. (2006) The nuclear microspherule protein 58 is a novel
    RNA-binding protein that interacts with fragile X mental retardation protein in
    polyribosomal mRNPs from neurons. Human molecular genetics, 15, 1525-1538.
    38. Shimono, K., Shimono, Y., Shimokata, K., Ishiguro, N. and Takahashi, M. (2005)
    Microspherule protein 1, Mi-2beta, and RET finger protein associate in the
    nucleolus and up-regulate ribosomal gene transcription. The Journal of biological
    chemistry, 280, 39436-39447.
    39. Lin, D.Y. and Shih, H.M. (2002) Essential role of the 58-kDa microspherule
    protein in the modulation of Daxx-dependent transcriptional repression as revealed
    by nucleolar sequestration. The Journal of biological chemistry, 277, 25446-25456.
    40. Ivanova, A.V., Ivanov, S.V. and Lerman, M.L. (2005) Association, mutual
    stabilization, and transcriptional activity of the STRA13 and MSP58 proteins.
    Cellular and molecular life sciences : CMLS, 62, 471-484.
    41. Wu, J.L., Lin, Y.S., Yang, C.C., Lin, Y.J., Wu, S.F., Lin, Y.T. and Huang, C.F.
    (2009) MCRS2 represses the transactivation activities of Nrf1. BMC cell biology,
    10, 9.
    42. Hirohashi, Y., Wang, Q., Liu, Q., Du, X., Zhang, H., Sato, N. and Greene, M.I.
    (2006) p78/MCRS1 forms a complex with centrosomal protein Nde1 and is
    essential for cell viability. Oncogene, 25, 4937-4946.
    43. Du, X., Wang, Q., Hirohashi, Y. and Greene, M.I. (2006) DIPA, which can localize
    to the centrosome, associates with p78/MCRS1/MSP58 and acts as a repressor of
    gene transcription. Experimental and molecular pathology, 81, 184-190.
    44. Meunier, S. and Vernos, I. (2011) K-fibre minus ends are stabilized by a
    RanGTP-dependent mechanism essential for functional spindle assembly. Nature
    cell biology, 13, 1406-1414.
    45. Song, H., Li, Y., Chen, G., Xing, Z., Zhao, J., Yokoyama, K.K., Li, T. and Zhao, M.
    (2004) Human MCRS2, a cell-cycle-dependent protein, associates with
    LPTS/PinX1 and reduces the telomere length. Biochemical and biophysical
    research communications, 316, 1116-1123.
    46. Benavides, M., Chow-Tsang, L.F., Zhang, J. and Zhong, H. (2013) The novel
    interaction between microspherule protein Msp58 and ubiquitin E3 ligase EDD
    regulates cell cycle progression. Biochimica et biophysica acta, 1833, 21-32.
    60
    47. Karagiannidis, A.I., Bader, A.G., Hartl, M. and Bister, K. (2008) TOJ3, a v-jun
    target with intrinsic oncogenic potential, is directly regulated by Jun via a novel
    AP-1 binding motif. Virology, 378, 371-376.
    48. Okumura, K., Zhao, M., Depinho, R.A., Furnari, F.B. and Cavenee, W.K. (2005)
    Cellular transformation by the MSP58 oncogene is inhibited by its physical
    interaction with the PTEN tumor suppressor. Proceedings of the National Academy
    of Sciences of the United States of America, 102, 2703-2706.
    49. Zhou, X.Z., Huang, P., Shi, R., Lee, T.H., Lu, G., Zhang, Z., Bronson, R. and Lu,
    K.P. (2011) The telomerase inhibitor PinX1 is a major haploinsufficient tumor
    suppressor essential for chromosome stability in mice. The Journal of clinical
    investigation, 121, 1266-1282.
    50. Reisman, D., Glaros, S. and Thompson, E.A. (2009) The SWI/SNF complex and
    cancer. Oncogene, 28, 1653-1668.
    51. Harbour, J.W. and Dean, D.C. (2000) Chromatin remodeling and Rb activity.
    Current opinion in cell biology, 12, 685-689.
    52. Dunaief, J.L., Strober, B.E., Guha, S., Khavari, P.A., Alin, K., Luban, J.,
    Begemann, M., Crabtree, G.R. and Goff, S.P. (1994) The retinoblastoma protein
    and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell, 79,
    119-130.
    53. Hendricks, K.B., Shanahan, F. and Lees, E. (2004) Role for BRG1 in cell cycle
    control and tumor suppression. Molecular and cellular biology, 24, 362-376.
    54. Kang, H., Cui, K. and Zhao, K. (2004) BRG1 controls the activity of the
    retinoblastoma protein via regulation of p21CIP1/WAF1/SDI. Molecular and
    cellular biology, 24, 1188-1199.
    55. Napolitano, M.A., Cipollaro, M., Cascino, A., Melone, M.A., Giordano, A. and
    Galderisi, U. (2007) Brg1 chromatin remodeling factor is involved in cell growth
    arrest, apoptosis and senescence of rat mesenchymal stem cells. Journal of cell
    science, 120, 2904-2911.
    56. Ito, T., Watanabe, H., Yamamichi, N., Kondo, S., Tando, T., Haraguchi, T.,
    Mizutani, T., Sakurai, K., Fujita, S., Izumi, T. et al. (2008) Brm transactivates the
    telomerase reverse transcriptase (TERT) gene and modulates the splicing patterns
    of its transcripts in concert with p54(nrb). The Biochemical journal, 411, 201-209.
    57. Bultman, S., Gebuhr, T., Yee, D., La Mantia, C., Nicholson, J., Gilliam, A.,
    Randazzo, F., Metzger, D., Chambon, P., Crabtree, G. et al. (2000) A Brg1 null
    mutation in the mouse reveals functional differences among mammalian SWI/SNF
    complexes. Molecular cell, 6, 1287-1295.
    58. Wong, A.K., Shanahan, F., Chen, Y., Lian, L., Ha, P., Hendricks, K., Ghaffari, S.,
    61
    Iliev, D., Penn, B., Woodland, A.M. et al. (2000) BRG1, a component of the
    SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer research,
    60, 6171-6177.
    59. Tang, Z., Zhao, Y., Mei, F., Yang, S., Li, X., Lv, J., Hou, L. and Zhang, B. (2004)
    Molecular cloning and characterization of a human gene involved in transcriptional
    regulation of hTERT. Biochemical and biophysical research communications, 324,
    1324-1332.
    60. Zhao, Y., Zheng, J., Ling, Y., Hou, L. and Zhang, B. (2005) Transcriptional
    upregulation of DNA polymerase beta by TEIF. Biochemical and biophysical
    research communications, 333, 908-916.
    61. Gong, Y., Sun, Y., McNutt, M.A., Sun, Q., Hou, L., Liu, H., Shen, Q., Ling, Y.,
    Chi, Y. and Zhang, B. (2009) Localization of TEIF in the centrosome and its
    functional association with centrosome amplification in DNA damage, telomere
    dysfunction and human cancers. Oncogene, 28, 1549-1560.
    62. Hsu, C.C., Lee, Y.C., Yeh, S.H., Chen, C.H., Wu, C.C., Wang, T.Y., Chen, Y.N.,
    Hung, L.Y., Liu, Y.W., Chen, H.K. et al. (2012) 58-kDa microspherule protein
    (MSP58) is novel Brahma-related gene 1 (BRG1)-associated protein that modulates
    p53/p21 senescence pathway. The Journal of biological chemistry, 287,
    22533-22548.
    63. Lam, E.W. and Watson, R.J. (1993) An E2F-binding site mediates cell-cycle
    regulated repression of mouse B-myb transcription. The EMBO journal, 12,
    2705-2713.
    64. Wu, R.C. and Schonthal, A.H. (1997) Activation of p53-p21waf1 pathway in
    response to disruption of cell-matrix interactions. The Journal of biological
    chemistry, 272, 29091-29098.
    65. Hsin, I.L., Sheu, G.T., Chen, H.H., Chiu, L.Y., Wang, H.D., Chan, H.W., Hsu, C.P.
    and Ko, J.L. (2010) N-acetyl cysteine mitigates curcumin-mediated telomerase
    inhibition through rescuing of Sp1 reduction in A549 cells. Mutat Res, 688, 72-77.
    66. McCabe, N., Turner, N.C., Lord, C.J., Kluzek, K., Bialkowska, A., Swift, S.,
    Giavara, S., O'Connor, M.J., Tutt, A.N., Zdzienicka, M.Z. et al. (2006) Deficiency
    in the repair of DNA damage by homologous recombination and sensitivity to
    poly(ADP-ribose) polymerase inhibition. Cancer research, 66, 8109-8115.
    67. Shats, I., Milyavsky, M., Tang, X., Stambolsky, P., Erez, N., Brosh, R., Kogan, I.,
    Braunstein, I., Tzukerman, M., Ginsberg, D. et al. (2004) p53-dependent
    down-regulation of telomerase is mediated by p21waf1. The Journal of biological
    chemistry, 279, 50976-50985.
    68. Zhang, J., Ohta, T., Maruyama, A., Hosoya, T., Nishikawa, K., Maher, J.M.,
    62
    Shibahara, S., Itoh, K. and Yamamoto, M. (2006) BRG1 interacts with Nrf2 to
    selectively mediate HO-1 induction in response to oxidative stress. Molecular and
    cellular biology, 26, 7942-7952.
    69. Vojtek, A.B. and Hollenberg, S.M. (1995) Ras-Raf interaction: two-hybrid analysis.
    Methods in enzymology, 255, 331-342.
    70. Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L.,
    Coviello, G.M., Wright, W.E., Weinrich, S.L. and Shay, J.W. (1994) Specific
    association of human telomerase activity with immortal cells and cancer. Science,
    266, 2011-2015.
    71. Wright, W.E., Shay, J.W. and Piatyszek, M.A. (1995) Modifications of a telomeric
    repeat amplification protocol (TRAP) result in increased reliability, linearity and
    sensitivity. Nucleic acids research, 23, 3794-3795.
    72. Falchetti, M.L., Levi, A., Molinari, P., Verna, R. and D'Ambrosio, E. (1998)
    Increased sensitivity and reproducibility of TRAP assay by avoiding direct primers
    interaction. Nucleic acids research, 26, 862-863.
    73. Chen, C.H., Lu, P.J., Chen, Y.C., Fu, S.L., Wu, K.J., Tsou, A.P., Lee, Y.C., Lin,
    T.C., Hsu, S.L., Lin, W.J. et al. (2007) FLJ10540-elicited cell transformation is
    through the activation of PI3-kinase/AKT pathway. Oncogene, 26, 4272-4283.
    74. Fujita, M., Inoue, M., Tanizawa, O., Iwamoto, S. and Enomoto, T. (1992)
    Alterations of the p53 gene in human primary cervical carcinoma with and without
    human papillomavirus infection. Cancer research, 52, 5323-5328.
    75. Reiss, M., Brash, D.E., Munoz-Antonia, T., Simon, J.A., Ziegler, A., Vellucci, V.F.
    and Zhou, Z.L. (1992) Status of the p53 tumor suppressor gene in human squamous
    carcinoma cell lines. Oncology research, 4, 349-357.
    76. Song, H., Li, Y., Chen, G., Xing, Z., Zhao, J., Yokoyama, K.K., Li, T. and Zhao, M.
    (2004) Human MCRS2, a cell-cycle-dependent protein, associates with
    LPTS/PinX1 and reduces the telomere length. Biochemical and biophysical
    research communications, 316, 1116-1123.
    77. Ferbeyre, G., de Stanchina, E., Lin, A.W., Querido, E., McCurrach, M.E., Hannon,
    G.J. and Lowe, S.W. (2002) Oncogenic ras and p53 cooperate to induce cellular
    senescence. Molecular and cellular biology, 22, 3497-3508.
    78. Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S.,
    Higashimoto, Y., Appella, E., Minucci, S., Pandolfi, P.P. et al. (2000) PML
    regulates p53 acetylation and premature senescence induced by oncogenic Ras.
    Nature, 406, 207-210.
    79. Shieh, S.Y., Ikeda, M., Taya, Y. and Prives, C. (1997) DNA damage-induced
    phosphorylation of p53 alleviates inhibition by MDM2. Cell, 91, 325-334.
    63
    80. Zou, L. and Elledge, S.J. (2003) Sensing DNA damage through ATRIP recognition
    of RPA-ssDNA complexes. Science (New York, N.Y, 300, 1542-1548.
    81. Allen, M.D., Religa, T.L., Freund, S.M. and Bycroft, M. (2007) Solution structure
    of the BRK domains from CHD7. Journal of molecular biology, 371, 1135-1140.
    82. el-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M.,
    Lin, D., Mercer, W.E., Kinzler, K.W. and Vogelstein, B. (1993) WAF1, a potential
    mediator of p53 tumor suppression. Cell, 75, 817-825.
    83. Shi, H., Chen, S., Jin, H., Xu, C., Dong, G., Zhao, Q., Wang, W., Zhang, H., Lin,
    W., Zhang, J. et al. (2009) Downregulation of MSP58 inhibits growth of human
    colorectal cancer cells via regulation of the cyclin D1-cyclin-dependent kinase
    4-p21 pathway. Cancer science, 100, 1585-1590.
    84. Meyerson, M., Counter, C.M., Eaton, E.N., Ellisen, L.W., Steiner, P., Caddle, S.D.,
    Ziaugra, L., Beijersbergen, R.L., Davidoff, M.J., Liu, Q. et al. (1997) hEST2, the
    putative human telomerase catalytic subunit gene, is up-regulated in tumor cells
    and during immortalization. Cell, 90, 785-795.
    85. Poole, J.C., Andrews, L.G. and Tollefsbol, T.O. (2001) Activity, function, and gene
    regulation of the catalytic subunit of telomerase (hTERT). Gene, 269, 1-12.
    86. Andersen, D.S., Raja, S.J., Colombani, J., Shaw, R.L., Langton, P.F., Akhtar, A.
    and Tapon, N. (2010) Drosophila MCRS2 associates with RNA polymerase II
    complexes to regulate transcription. Molecular and cellular biology, 30,
    4744-4755.
    87. Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P.,
    Sehested, M., Nesland, J.M., Lukas, C. et al. (2005) DNA damage response as a
    candidate anti-cancer barrier in early human tumorigenesis. Nature, 434, 864-870.
    88. Mallette, F.A., Gaumont-Leclerc, M.F. and Ferbeyre, G. (2007) The DNA damage
    signaling pathway is a critical mediator of oncogene-induced senescence. Genes &
    development, 21, 43-48.
    89. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. and Lowe, S.W. (1997)
    Oncogenic ras provokes premature cell senescence associated with accumulation of
    p53 and p16INK4a. Cell, 88, 593-602.
    90. Drost, J., Mantovani, F., Tocco, F., Elkon, R., Comel, A., Holstege, H., Kerkhoven,
    R., Jonkers, J., Voorhoeve, P.M., Agami, R. et al. BRD7 is a candidate tumour
    suppressor gene required for p53 function. Nature cell biology, 12, 380-389.
    91. Lee, D., Kim, J.W., Seo, T., Hwang, S.G., Choi, E.J. and Choe, J. (2002) SWI/SNF
    complex interacts with tumor suppressor p53 and is necessary for the activation of
    p53-mediated transcription. The Journal of biological chemistry, 277,
    22330-22337.
    64
    92. Xu, Y., Zhang, J. and Chen, X. (2007) The activity of p53 is differentially regulated
    by Brm- and Brg1-containing SWI/SNF chromatin remodeling complexes. The
    Journal of biological chemistry, 282, 37429-37435.
    93. Zhang, H.S., Gavin, M., Dahiya, A., Postigo, A.A., Ma, D., Luo, R.X., Harbour,
    J.W. and Dean, D.C. (2000) Exit from G1 and S phase of the cell cycle is regulated
    by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell,
    101, 79-89.
    94. Cai, Y., Jin, J., Swanson, S.K., Cole, M.D., Choi, S.H., Florens, L., Washburn,
    M.P., Conaway, J.W. and Conaway, R.C. (2010) Subunit composition and substrate
    specificity of a MOF-containing histone acetyltransferase distinct from the
    male-specific lethal (MSL) complex. The Journal of biological chemistry, 285,
    4268-4272.
    95. Crowe, D.L. and Nguyen, D.C. (2001) Rb and E2F-1 regulate telomerase activity in
    human cancer cells. Biochimica et biophysica acta, 1518, 1-6.
    96. Won, J., Yim, J. and Kim, T.K. (2002) Opposing regulatory roles of E2F in human
    telomerase reverse transcriptase (hTERT) gene expression in human tumor and
    normal somatic cells. FASEB journal : official publication of the Federation of
    American Societies for Experimental Biology, 16, 1943-1945.
    97. Hallstrom, T.C. and Nevins, J.R. (2006) Jab1 is a specificity factor for
    E2F1-induced apoptosis. Genes & development, 20, 613-623.
    98. Yao, Y., Bellon, M., Shelton, S.N. and Nicot, C. (2012) Tumor suppressors p53,
    p63TAalpha, p63TAy, p73alpha, and p73beta use distinct pathways to repress
    telomerase expression. The Journal of biological chemistry, 287, 20737-20747.
    99. Okawa, T., Michaylira, C.Z., Kalabis, J., Stairs, D.B., Nakagawa, H., Andl, C.D.,
    Johnstone, C.N., Klein-Szanto, A.J., El-Deiry, W.S., Cukierman, E. et al. (2007)
    The functional interplay between EGFR overexpression, hTERT activation, and
    p53 mutation in esophageal epithelial cells with activation of stromal fibroblasts
    induces tumor development, invasion, and differentiation. Genes & development,
    21, 2788-2803.
    100. Smith, L.L., Coller, H.A. and Roberts, J.M. (2003) Telomerase modulates
    expression of growth-controlling genes and enhances cell proliferation. Nature cell
    biology, 5, 474-479.
    101. Chang, J.T., Yang, H.T., Wang, T.C. and Cheng, A.J. (2005) Upstream stimulatory
    factor (USF) as a transcriptional suppressor of human telomerase reverse
    transcriptase (hTERT) in oral cancer cells. Molecular carcinogenesis, 44, 183-192.
    102. Horikawa, I., Cable, P.L., Mazur, S.J., Appella, E., Afshari, C.A. and Barrett, J.C.
    (2002) Downstream E-box-mediated regulation of the human telomerase reverse
    65
    transcriptase (hTERT) gene transcription: evidence for an endogenous mechanism
    of transcriptional repression. Molecular biology of the cell, 13, 2585-2597.
    103. Goueli, B.S. and Janknecht, R. (2003) Regulation of telomerase reverse
    transcriptase gene activity by upstream stimulatory factor. Oncogene, 22,
    8042-8047.
    104. Racek, T., Mise, N., Li, Z., Stoll, A. and Putzer, B.M. (2005) C-terminal p73
    isoforms repress transcriptional activity of the human telomerase reverse
    transcriptase (hTERT) promoter. The Journal of biological chemistry, 280,
    40402-40405.
    105. Beitzinger, M., Oswald, C., Beinoraviciute-Kellner, R. and Stiewe, T. (2006)
    Regulation of telomerase activity by the p53 family member p73. Oncogene, 25,
    813-826.
    106. Toh, W.H., Kyo, S. and Sabapathy, K. (2005) Relief of p53-mediated telomerase
    suppression by p73. The Journal of biological chemistry, 280, 17329-17338.
    107. Liang, Y., Liu, M., Wang, P., Ding, X. and Cao, Y. (2013) Analysis of 20 genes at
    chromosome band 12q13: RACGAP1 and MCRS1 overexpression in nonsmall-cell
    lung cancer. Genes, chromosomes & cancer, 52, 305-315.
    108. Hahn, W.C., Stewart, S.A., Brooks, M.W., York, S.G., Eaton, E., Kurachi, A.,
    Beijersbergen, R.L., Knoll, J.H., Meyerson, M. and Weinberg, R.A. (1999)
    Inhibition of telomerase limits the growth of human cancer cells. Nature medicine,
    5, 1164-1170.
    109. Zhang, X., Mar, V., Zhou, W., Harrington, L. and Robinson, M.O. (1999) Telomere
    shortening and apoptosis in telomerase-inhibited human tumor cells. Genes &
    development, 13, 2388-2399.
    110. Wu, L., Zhang, Z.G., Qin, H.Z., Zhang, J., Gao, G.D., Lin, W., Wang, J. and Zhang,
    J. (2012) Downregulation of MSP58 suppresses cell proliferation in neuroblastoma
    cell lines. Neuroreport, 23, 932-936.
    111. Xu, C.S., Zheng, J.Y., Zhang, H.L., Zhao, H.D., Zhang, J., Wu, G.Q., Wu, L.,
    Wang, Q., Wang, W.Z. and Zhang, J. (2012) MSP58 knockdown inhibits the
    proliferation of esophageal squamous cell carcinoma in vitro and in vivo. Asian
    Pacific journal of cancer prevention : APJCP, 13, 3233-3238.
    112. Lin, W., Zhang, J., Zhang, J., Liu, X., Fei, Z., Li, X., Davidovic, L., Tang, Z., Shen,
    L., Deng, Y. et al. (2009) RNAi-mediated inhibition of MSP58 decreases tumour
    growth, migration and invasion in a human glioma cell line. Journal of cellular and
    molecular medicine, 13, 4608-4622.
    113. Che-Chia Hsu. (2009) Molecular mechanism of cell cycle control and senescence
    by the 58-kDa Microspherule protein (MSP58), Master’s thesis, Department of
    66
    Pharmacology, College of Medicine, National Cheng Kung University, Tainan,
    Taiwan
    114. Tsui-Ying Wang. (2010) Functional analysis of a novel candidate oncogene, 58-kDa
    microspherule protein (MSP58), Master’s thesis, Department of Pharmacology,
    College of Medicine, National Cheng Kung University, Tainan, Taiwan
    115. Yu-Nong Chen. (2008) Overexpression of the Microspherule Protein 58 (MSP58)
    gene induces senescence-like state in HT1080 cells, Master’s thesis, Department of
    Pharmacology, College of Medicine, National Cheng Kung University, Tainan,
    Taiwan

    下載圖示 校內:2016-02-07公開
    校外:2016-02-07公開
    QR CODE