| 研究生: |
吳彥蓉 Wu, Yen-Jung |
|---|---|
| 論文名稱: |
聖嬰現象對高空短暫發光現象(淘氣精靈)與閃電活動之影響 The Impact of El Niño Southern Oscillation (ENSO) on Transient Luminous Event (Elve) and Lightning Activities |
| 指導教授: |
陳炳志
Chen, Alfred Bing-Chih 許瑞榮 Hsu, Rue Ron |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空天文與電漿科學研究所 Institute of Space, Astrophysical and Plasma Sciences(ISAPS) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 聖嬰南方震盪 、高空大氣閃電影像儀 、高空短暫發光現象 、淘氣精靈 、閃電 、閃電影像偵測儀 、南方震盪指數 、渥克環流 |
| 外文關鍵詞: | El Niño southern oscillation (ENSO), Imager of Sprite and Upper, Atmospheric Lightning (ISUAL), Transient Luminous Events (TLEs), Elve, Lightning, Lightning Imaging Sensor (LIS), Southern Oscillation Index (SOI), Walker circulation |
| 相關次數: | 點閱:147 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
福衛二號高空大氣閃電影像儀(ISUAL)是全球第一個從太空中觀測高空短暫發光現象的衛星酬載。經過五年觀測已累積足夠的資料進行大氣放電現象的全球分佈時間序列之研究,並且第一次有機會以觀測資料探索大氣放電現象與聖嬰南方震盪之間的關係。為了確保ISUAL觀測資料未受儀器衰減影響,本論文分析了ISUAL光譜光度計的長期衰減變化,確認在資料時間範圍內的事件偵測率不受儀器調整與衰減兩項因素的影響。
以閃電影像偵測儀(LIS)所觀測的閃電、ISUAL所觀測的閃電與淘氣精靈(Elve)等三種不同閃電能量之大氣放電現象資料為樣本。透過建構不同季節、不同放電資料的事件密度以進行空間與時序分析。結果顯示自2004年6月起五年間全球ISUAL閃電與LIS閃電活動變化趨勢一致,且維持穩定均值,但是淘氣精靈發生率有逐年增加的趨勢。五年任務期間共經歷兩次反聖嬰期以及兩次聖嬰期,以標準化距平對三種大氣放電資料進行太平洋區域聖嬰南方震盪冷、暖時期趨勢探討,我們發現淘氣精靈的變化同時具有代表地球環境的太平洋馬蹄形區域以及閃電活動的大溪地附近區域之特徵。
分析大氣放電現象與聖嬰南方震盪指數的時間相關性找出之聖嬰南方震盪正負強反應區域,分別為換日線赤道區及大溪地區域。採用與南方震盪指數類似之定義,對不同放電現象之事件發生率進行計算,發現所得到的變化曲線與南方震盪指數、Niño 3.4指標皆有高度時間相關性。顯示閃電、淘氣精靈在太平洋區域的變化確實受到聖嬰南方震盪的影響,並且呈現顯著的關連性。
Imager of Sprite and Upper Atmospheric Lightning (ISUAL) onboard the FORMOSAT-2 satellite is the first space-borne scientific payload dedicated to the long-term survey of the transient luminous events (TLEs). To monitor the performance change of the ISUAL sensors, the instrumental degradation and the effective detection efficiency is carefully investigated by the routine calibration observations. The chronic variation of TLE event rates show no notable trend between the annual cycles; this result implies that the detection efficiency of ISUAL has maintained at a constant level in the first 5 years of operation and no correction to the current statistics is necessary.
We analyze 3 datasets of atmospheric discharge observations from the space, ISUAL-recorded elve, lightning, and LIS-recorded lightning, covering the average energies from high to low respectively. The ISUAL lightning and the LIS lightning rates show similar trend and remain nearly constant from June 2004 to the present, while the seasonal rates of elve increase gradually. Two El Niño events and two La Niña events have experienced in the past 5 years. A standardized anomaly analysis is adapted to identify the elves and lightning variability in the warm and cold phases of ENSO, which is characterized by the South Oscillation Index. The anomaly elve distributions during these episodes are consistent with the Pacific horseshoe pattern and the ENSO lightning characteristics in the Tahiti region.
The correlation between the atmospheric discharges and the major indices that scientist commonly use to identify ENSO, such as Southern Oscillation Index and Niño 3.4 Oceanic Niño Index, is discussed. The equatorial dateline and the Tahiti regions are chosen as a comparative areas for the elve and lightning as they response to the ENSO episodes. The tight correlation between the atmospheric discharges and ENSO interannual variability provides the concrete evidence that the electricity activity at upper atmosphere can be directly affected by the variation of the ocean and atmosphere conditions.
Boccippio, D. J., Driscoll, K., Hall, J. et al., LIS/OTD Software Guide (1998).
Barrington-Leigh, C. P., U. S. Inan, and M. Stanley, Identification of sprites and elves with intensified video and broadband array photometry, J. Geophys. Res., 106, 1741 (2001).
Boeck, W. L. et al., Observations of lightning in the stratosphere, J. Geophys. Res., 100, 1465 (1995).
Chern, J. L., R. R. Hsu, H. T. Su, S. B. Mende, H. Fukunishi, Y. Takahashi, and L. C. Lee, Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite, J. Atmos. Sol. Terr. Phys., 65(5), 647 (2003).
Chen, A. B., C.-L. Kuo, Y.-J. Lee, H.-T. Su, R.-R. Hsu, J.-L. Chern, H. U. Frey, S. B. Mende, Y. Takahashi, H. Fukunishi, Y.-S. Chang, T.-Y. Liu, and L.-C. Lee, Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113, 08306 (2008).
Chen, A. B., Chiang, C. Y., Su, C. T.,et al.,Distribution and seasonal variation of global lightning activities observed by ISUAL experiment, AGU Fall Meeting Abstracts, AE23A-0888 (2007).
Chen, A. B., Chiang, C. Y., Huang, Y. C.,et al., Sensitivity degradation of the ISUAL instruments and its impact to the observation, Terr. Atmos. and Ocean. Sci., under preparation (2010).
Chronis, T. G., Goodman, S. J., Cecil, D., Global lightning activity from the ENSO perspective, J. Geophys. Res., 35, L19804 (2008).
Christian, H. J., Blakeslee, R. J., Boccippio, D. J. et al., Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., vol. 108, No. D1, 4005 (2003).
TRMM User Handbook, Earth Observation Center, National Space Development Agency of Japan (2001).
Franz, R. C., R. J. Nemzek, and J. R. Winckler, Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System, Science, 249, 48 (1990).
Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons, Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23, 2157 (1996).
Füllekrug, M., C. Price, Y. Yair, and E. R. Williams, Intense oceanic lightning, Ann. Geophys., 20, 133 (2002).
Inan, U. S., T. F. Bell, and J. V. Rodriguez, Heating and ionization of the lower ionosphere by lightning, Geophys. Res. Lett., 18, 705 (1991).
Jayaratne, E. R., and Saunders, C. P. R., and Hallett, J., Laboratory studies of the charging of soft-hail during ice crystal interactions, Q. J. R. Meteor. Soc., 109, 609 (1983).
Kuo, C.-L., J. K. Chou, L. Y. Tsai, A. B. Chen, H. T. Su, R. R. Hsu, S. A. Cummer, H. U. Frey, S. B. Mende, Y. Takahashi, L. C. Lee, Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets, J. Geophys. Res., 114, A04314 (2009).
Krehbiel, P.R., The electrical structure of thunderstorms. In The Earth’s Electrical Environment, eds. E. P. Krider and P. G. Roble, pp. 90, Washington, DC, National Academy Press (1986).
Lee, L. J., Chen, A. B., Chang, S. C. et al., The controlling synoptic-scale factors for the distribution of the transient luminous events (TLEs), J. Geophys. Res., doi:10.1029/2009JA014823, accepted (2010).
MacKenzie, T., and H. Toynbee, Meteorological phenomena, Nature 33, 26 (1886).
McPhaden, M. J., Evolution of the 2006-2007 El Niño: the role of intraseasonal to interannual time scale dynamics, Adv. Geosci.,14, 219 (2008).
National Aeronautics and Space Administration, The importance of understanding clounds, NASA Facts, FS-2005-9-073-GSFC (2005).
Pasko, V. P., U. S. Inan, and T. F. Bell, Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields, Geophys. Res. Lett., 23, 649 (1996).
Pasko, V. P., U. S. Inan, and T. F. Bell, Sprites produce by quasi-electrostatic heating and ionization in the lower ionosphere, Geophys. Res. Lett., 23, 649 (1997).
Pasko, V. P., M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Wood, Electrical discharge from a thundercloud top to the lower ionosphere, Nature, 416, 152 (2002).
Philander, S. G. H., El ñino and La ñina, J. Atmos. Sci., 42, 23 (1985).
Rakov, V. A. and Uman, M. A., Lightning physics and Effect, Cambridge University Press (2003).
Su, H. T., R. R. Hsu, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi, Gigantic jets between a thundercloud and the ionosphere, Nature, 423, 974 (2003).
Su, H.; Huang, T.;Kuo, C.; Chen, A. B.; Hsu, R.; Mende, S. B.; Frey, H. U.; Fukunishi, H.;Takahashi, Y.; Lee, L., Global distribution of TLEs based on the preliminary ISUAL data , AGU Fall Meeting Abstracts, AE51A-03 (2004).
Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner, Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites, Geophys. Res. Lett., 22, 1205 (1995).
Sátori, G., Williams, E., Lemperger, I., Variability of global lightning activity on the ENSO time scale, Atmos. Res.,91, 500 (2009).
Turman, B. N., Detection of lightning superbolts, J. Geophys. Res., 82, 2566 (1977).
Trenberth, K. E., The definition of El Niño, Bulletin of the American Meteorological Society, 78, 2771 (1997).
Wescott, E. M., D. Sentman, D. Osborne, D. Hampton, and M. Heavner, Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets, Geophys. Res. Lett., 22, 1209 (1995).
Walker, G. T., Correlation in seasonal variation of weather, VIII: A preliminary study of world weather. Mem. Indian Meteor. Dep., 24, 75 (1923).
Walker, G. T. and E. W. Bliss, World Weather V., Mem. Roy. Meteor. Soc., 4, 119 (1932).
Wang, C., Atmospheric circulation cells associated with the El Niño Southern Oscillation, J. Climate, vol. 15, 399 (2001).
Wang, H. J., Zhang, R. H.,Cole, J., Chavez, F., El nino and the related phenomenon Southern Oscillation(ENSO): The Largest signal in interannual climate variation, Proc. Natl. Acad. Sci., 96, 11071 (1999).
Wacker, R. S. and R. E. Orville, Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade, J. Geophys Res., 104, 2151 (1999).
Yair,Y., Price, C., Levin, Z., et al., Sprite observations from the space shuttle during the Mediterranean Israeli dust experiment (MEIDEX), J. Atmo. Terr. Phys., 65, 635 (2003).
Yeh, S. W., Kug, J. S., Dewitte, B. et al., El Niño in a changing climate, Nature, 461, 08316 (2009).
Yoshida, S. , Morimoto, T., Ushino, T., Kawasaki, Z., ENSO and convective activities in Southern Asia and western Pacific, Geophys. Res. Lett., 34, L21806 (2007).
周容光,藍色及巨大噴流等高空短暫發光現象之探討,國立成功大學物理研究所碩士論文(2008)。
李立柔,影響高空短暫發光現象分布的綜觀尺度因素,國立成功大學物理研究所碩士論文 (2009)。
張淑鈞,福衛二號「高空大氣閃電影像儀」酬載所記錄的遠紫外光訊號之分析,國立成功大學物理研究所碩士論文 (2009)。