簡易檢索 / 詳目顯示

研究生: 王家慶
Wang, Chia-Ching
論文名稱: 加熱過程中嵌段共聚物混摻之水平圓柱、穿孔層、雙螺旋之有序-有序與有序-無序相轉變
Order-Order and Order-Disorder Transitions among Parallel Cylinders, Perforated Layers and Double Gyroids in Block Copolymer Blend Films During Heating
指導教授: 孫亞賢
Sun, Ya-Sen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 93
中文關鍵詞: 嵌段共聚物聚苯乙烯-b-聚(甲基丙烯酸甲酯)混摻相轉變低掠角小角度X光散射儀
外文關鍵詞: block copolymer, PS-b-PMMA, blending, phase transition, GISAXS
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中主要使用對稱型嵌段共聚物聚苯乙烯-b-聚(甲基丙烯酸甲酯)(PS21k-b-PMMA21k,通過混摻未氘化聚苯乙烯(PS)與氘化聚苯乙烯(Deuterated Poly-styrene-d8, dPS)不同分子量的均聚物。利用光學顯微鏡(OM)、原子力顯微鏡(AFM)、掃描電子顯微鏡(SEM)等對真實空間的表面呈像,使用低掠角小角度X光散射儀(GISAXS)分析薄膜內部結構。
    靜態GISAXS在230 ℃及270 ℃分別進行1 h與24 h的熱處理,以獲得奈米結構。透過量測一系列的入射角角度變化得到入射角解析(incident-angle-resolved, IAR) GISAXS圖與散射公式相互搭配,通過在out-of-plane擬合繞射點定性定量分析薄膜結構資訊如水平圓柱(Parallel Cylinder, C//)、穿孔層(Perforated layers, PL)與雙螺旋(Double Gyroids, G),過程中使用繞射點映射(mapping)晶面,量化微域間距等方法,更深入的解析薄膜結構與GISAXS 2D 圖。
    臨場(in-situ) GISAXS在210-280 ℃進行連續升溫,探討嵌段共聚物混摻的有序-有序(order-order transition, OOT)與有序-無序相轉變(order-disorder transition, ODT),了解不同樣品相轉變發生範圍、結構變化、發生機制等,配合靜態GISAXS確認結構在降溫過程中是否發生改變。
    最後靜態實驗結果顯示,230 ℃下結構已形成但有序性較差,270 ℃則需要更長時間達到平衡。臨場實驗中發現,混摻低分子量均聚物的樣品在升溫過程中可觀察到TODT,揭示低分子量均聚物會屏蔽介面交互作用使TODT降低。而高分子量均聚物混摻樣品顯示出對介穩態結構的穩定性,更長時間的存在。比較後觀察到,在未超過TODT的溫度下,結構在降溫過程中無明顯變化,表明可快速升溫至所需結構溫度。這項研究提供了BCP混摻結構形成的關鍵資訊,對高分子材料設計和製程具有重要意義。

    In this study, we primarily use symmetric block copolymer polystyrene-b-poly(methyl methacrylate) (PS21k-b-PMMA21k) blended with polystyrene and deuterated polysty-rene (dPS) homopolymers of different molecular weights. The surface morphology was analyzed using optical microscopy (OM), atomic force microscopy (AFM), and scan-ning electron microscopy (SEM), while the internal structures of the thin films were analyzed by grazing-incidence small-angle X-ray scattering (GISAXS).
    In static GISAXS, samples were annealed at temperatures of 230 and 270°C for 1 and 24 hours to obtain nanostructures. By measuring a series of incident angle variations, incident-angle-resolved (IAR) GISAXS patterns were obtained and combined with scattering formulas. Through out-of-plane fitting of diffraction points, structures such as parallel cylinders (C//), perforated layers (PL), and double gyroids (G) were re-vealed. This analysis enabled the mapping of diffraction points to Miller indices, quan-tification of microdomain spacing, and a deeper understanding of the thin film struc-ture and GISAXS 2D patterns.
    In-situ GISAXS was performed with continuous heating from 210 to 280 °C to investi-gate order-order transitions (OOT) and order-disorder transitions (ODT) of blended block copolymers. The study aimed to understand the range, structural changes, and mechanisms of phase transitions in different samples. Static GISAXS was also used to confirm whether the structure changed during the cooling process.
    The static GISAXS experiment results showed that structures formed at 230 °C but had poor ordering, while at 270 °C, longer times were required to reach equilibrium. In the in-situ GISAXS experiments, samples blended with low molecular weight homopoly-mers exhibited TODT during the heating process, with low molecular weight homopol-ymers screening interfacial interactions and resulting in a lower TODT. Samples with high molecular weight homopolymers displayed stable metastable structures that per-sisted for longer times. Comparatively, we observed that at temperatures below TODT, the structures did not change significantly during cooling, suggesting that rapid heating to the desired structural temperature is feasible. This study provides critical insights into the formation of BCP blended structures, offering significant implications for the design and processing of polymer materials.

    摘要 I Extended Abstract III 致謝 VIII 目錄 X 表目錄 XIII 圖目錄 XIV 第1章 緒論 1 1-1 共聚物(copolymer) 1 1-2 嵌段共聚物之塊材(bulk)系統自組裝 2 1-3 嵌段共聚物之薄膜系統自組裝 3 1-3-1 表面場 4 1-3-2 空間侷限效應 7 1-3-3 厚度效應 8 1-4 嵌段共聚物之混摻(blend)系統 9 1-4-1 均聚物分子量 10 1-4-2 均聚物體積分率ϕ 11 1-4-3 結構穩定性 12 1-4-4 應用 14 1-5 有序-無序相轉變溫度(order-disorder transition temperature, TODT) 15 1-6 常見結構介紹 16 1-6-1 水平圓柱(Parallel Cylinder, C//) 17 1-6-1-1 六方陣列水平圓柱(對稱性:P6mm) 17 1-6-1-2 矩形陣列水平圓柱(對稱性:C2mm) 18 1-6-2 穿孔層(Perforated Layer, PL) 19 1-6-3 雙螺旋(Double Gyroid, G) 21 1-7 研究動機 23 第2章 實驗 25 2-1 實驗材料 25 2-1-1 高分子材料 25 2-1-2 溶劑 25 2-1-3 基材 25 2-2 實驗儀器 25 2-3 實驗步驟 26 2-3-1 基材前處理 26 2-3-2 薄膜製備 26 2-3-3 GISAXS 靜態量測 27 2-3-4 GISAXS 動態量測 27 2-4 儀器原理 28 2-4-1 光學顯微鏡 28 2-4-2 原子力顯微鏡 28 2-4-3 掃描式電子顯微鏡 30 2-4-4 低掠角小角度X光散射 30 2-4-4-1 GISAXS 2D圖特徵 34 第3章 結果與討論 37 3-1 樣品表面之觀察 37 3-2 GISAXS 定性分析 39 3-2-1 GISAXS 2D 圖 39 3-3 數據處理 43 3-3-1 in-plane 43 3-3-2 out-of-plane 45 3-4 GISAXS 定量分析 46 3-4-1 擬合公式 46 3-4-2 角度校正 48 3-4-3 結構分析 49 3-4-3-1 水平圓柱 49 3-4-3-2 穿孔層 51 3-4-3-3 雙螺旋 54 3-4-3-4 混和結構 55 3-4-4 記憶效應 58 3-5 臨場升溫過程中結構轉變 58 第4章 結論 66 reference 68 附錄 73

    [1] Aloorkar, N.; Kulkarni, A.; Patil, R.; Ingale, D. Star Polymers: An Overview. Int. J. Pharm. Sci. Nanotechnol 2012, 5, 1675-1684.
    [2] Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chemical Society Reviews 2012, 41 (18), 5969-5985.
    [3] Zofchak, E. S.; LaNasa, J. A.; Torres, V. M.; Hickey, R. J. Deciphering the Complex Phase Behavior During Polymerization-Induced Nanostructural Transitions of a Block Polymer/Monomer Blend. Macromolecules 2020, 53 (3), 835-843.
    [4] Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Förster, S.; Rosedale, J. H.; Almdal, K.; Mortensen, K. Fluctuations, Conformational Asymmetry and Block Copolymer Phase Behaviour. Faraday Discussions 1994, 98, 7-18.
    [5] Knoll, A.; Horvat, A.; Lyakhova, K.; Krausch, G.; Sevink, G.; Zvelindovsky, A.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers. Physical Review Letters 2002, 89 (3), 035501.
    [6] Horvat, A.; Lyakhova, K.; Sevink, G.; Zvelindovsky, A.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming ABA Block Copolymers: Mesoscale Modeling. The Journal of chemical physics 2004, 120 (2), 1117-1126.
    [7] Hong, J.-W.; Chang, J.-H.; Hung, H.-H.; Liao, Y.-P.; Jian, Y.-Q.; Chang, I. C.-Y.; Huang, T.-Y.; Nelson, A.; Lin, I.-M.; Chiang, Y.-W. Chain Length Effects of Added Homopolymers on the Phase Behavior in Blend Films of a Symmetric, Weakly Segregated Polystyrene-Block-Poly (Methyl Methacrylate). Macromolecules 2022, 55 (6), 2130-2147.
    [8] Knoll, A.; Magerle, R.; Krausch, G. Phase Behavior in Thin Films of Cylinder-Forming ABA Block Copolymers: Experiments. The Journal of chemical physics 2004, 120 (2), 1105-1116.
    [9] Lyakhova, K.; Sevink, G.; Zvelindovsky, A.; Horvat, A.; Magerle, R. Role of Dissimilar Interfaces in Thin Films of Cylinder-Forming Block Copolymers. The Journal of chemical physics 2004, 120 (2), 1127-1137.
    [10] Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy; Springer Science & Business Media, 2002.
    [11] Arceo, A.; Green, P. F. Ordering Transition of Block Copolymer Films. The Journal of Physical Chemistry B 2005, 109 (15), 6958-6962.
    [12] Stein, G.; Cochran, E. W.; Katsov, K.; Fredrickson, G.; Kramer, E.; Li, X.; Wang, J. Symmetry Breaking of in-plane Order in Confined Copolymer Mesophases. Physical review letters 2007, 98 (15), 158302.
    [13] Kramer, E. J. Phase Transitions in Thin Block Copolymer Films. MRS bulletin 2010, 35 (6), 457-465.
    [14] Mishra, V.; Hur, S.-m.; Cochran, E. W.; Stein, G. E.; Fredrickson, G. H.; Kramer, E. J. Symmetry Transition in Thin Films of Diblock Copolymer/Homopolymer Blends. Macromolecules 2010, 43 (4), 1942-1949.
    [15] Saito, I.; Miyazaki, T.; Yamamoto, K. Depth-Resolved Structure Analysis of Cylindrical Microdomain in Block Copolymer Thin Film by Grazing-Incidence Small-Angle X-Ray Scattering Utilizing Low-Energy X-Rays. Macromolecules 2015, 48 (22), 8190-8196.
    [16] Stein, G. E.; Kramer, E. J.; Li, X.; Wang, J. Layering Transitions in Thin Films of Spherical-Domain Block Copolymers. Macromolecules 2007, 40 (7), 2453-2460.
    [17] Jung, J.; Park, H.-W.; Lee, S.; Lee, H.; Chang, T.; Matsunaga, K.; Jinnai, H. Effect of Film Thickness on the Phase Behaviors of Diblock Copolymer Thin Film. ACS nano 2010, 4 (6), 3109-3116.
    [18] Jin, X.-s.; Pang, Y.-y.; Ji, S.-x. From Self-Assembled Monolayers to Chemically Patterned Brushes: Controlling the Orientation of Block Copolymer Domains in Films by Substrate Modification. Chinese Journal of Polymer Science 2016, 34 (6), 659-678.
    [19] Rehse, N.; Knoll, A.; Konrad, M.; Magerle, R.; Krausch, G. Surface Reconstruction of an Ordered Fluid: An Analogy with Crystal Surfaces. Physical Review Letters 2001, 87 (3), 035505.
    [20] Tanaka, H.; Hasegawa, H.; Hashimoto, T. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 1. Solubilization of Low Molecular Weight Homopolymers. Macromolecules 1991, 24 (1), 240-251.
    [21] Walton, D.; Kellogg, G.; Mayes, A.; Lambooy, P.; Russell, T. A Free Energy Model for Confined Diblock Copolymers. Macromolecules 1994, 27 (21), 6225-6228.
    [22] Matsen, M. Thin Films of Block Copolymer. The Journal of chemical physics 1997, 106 (18), 7781-7791.
    [23] Huang, E.; Mansky, P.; Russell, T.; Harrison, C.; Chaikin, P.; Register, R.; Hawker, C.; Mays, J. Mixed Lamellar Films: Evolution, Commensurability Effects, and Preferential Defect Formation. Macromolecules 2000, 33 (1), 80-88.
    [24] Hashimoto, T.; Tanaka, H.; Hasegawa, H. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 2. Effects of Molecular Weights of Homopolymers. Macromolecules 1990, 23 (20), 4378-4386.
    [25] Jeong, U.; Ryu, D. Y.; Kho, D. H.; Lee, D. H.; Kim, J. K.; Russell, T. P. Phase Behavior of Mixtures of Block Copolymer and Homopolymers in Thin Films and Bulk. Macromolecules 2003, 36 (10), 3626-3634.
    [26] Jeong, U.; Ryu, D. Y.; Kho, D. H.; Kim, J. K.; Goldbach, J. T.; Kim, D. H.; Russell, T. P. Enhancement in the Orientation of the Microdomain in Block Copolymer Thin Films Upon the Addition of Homopolymer. Advanced Materials 2004, 16 (6), 533-536.
    [27] Yabu, H.; Motoyoshi, K.; Higuchi, T.; Shimomura, M. Hierarchical Structures in AB/AC Type Diblock-Copolymer Blend Particles. Physical Chemistry Chemical Physics 2010, 12 (38), 11944-11947.
    [28] Hasegawa, H.; Hashimoto, T. 14 - Self-Assembly and Morphology of Block Copolymer Systems. In Comprehensive Polymer Science and Supplements, Allen, G., Bevington, J. C. Eds.; Pergamon, 1989, 497-539.
    [29] Koizumi, S.; Hasegawa, H.; Hashimoto, T. Ordered Structure of Block Polymer/Homopolymer Mixtures, 4. Vesicle Formation and Macrophase Separation. In Makromolekulare Chemie. Macromolecular Symposia, Wiley Online Library, 1992, 62, 75-91.
    [30] Choi, C.; Ahn, S.; Kim, J. K. Diverse Morphologies of Block Copolymers by Blending with Homo (and Co) polymers. ACS Publications: 2020, 53 (12), 4577-4580.
    [31] Dobrosielska, K.; Wakao, S.; Suzuki, J.; Noda, K.; Takano, A.; Matsushita, Y. Effect of Homopolymer Molecular Weight on Nanophase-Separated Structures of AB Block Copolymer/C Homopolymer Blends with Hydrogen-Bonding Interactions. Macromolecules 2009, 42 (18), 7098-7102.
    [32] Matsen, M. W.; Bates, F. S. Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29 (23), 7641-7644.
    [33] Matsen, M. W. Stabilizing New Morphologies by Blending Homopolymer with Block Copolymer. Physical review letters 1995, 74 (21), 4225.
    [34] Matsen, M. W.; Schick, M. Stable and Unstable Phases of a Diblock Copolymer Melt. Physical Review Letters 1994, 72 (16), 2660.
    [35] Doerk, G. S.; Yager, K. G. Rapid Ordering in “Wet Brush” Block Copolymer/Homopolymer Ternary Blends. ACS nano 2017, 11 (12), 12326-12336.
    [36] Kim, B. H.; Park, S. J.; Jin, H. M.; Kim, J. Y.; Son, S.-W.; Kim, M.-H.; Koo, C. M.; Shin, J.; Kim, J. U.; Kim, S. O. Anomalous Rapid Defect Annihilation in Self-Assembled Nanopatterns by Defect Melting. Nano Letters 2015, 15 (2), 1190-1196.
    [37] Stoykovich, M. P.; Muller, M.; Kim, S. O.; Solak, H. H.; Edwards, E. W.; De Pablo, J. J.; Nealey, P. F. Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures. Science 2005, 308 (5727), 1442-1446.
    [38] Sohn, K. E.; Kojio, K.; Berry, B. C.; Karim, A.; Coffin, R. C.; Bazan, G. C.; Kramer, E. J.; Sprung, M.; Wang, J. Surface Effects on the Thin Film Morphology of Block Copolymers with Bulk Order- Order Transitions. Macromolecules 2010, 43 (7), 3406-3414.
    [39] Shin, C.; Ahn, H.; Kim, E.; Ryu, D. Y.; Huh, J.; Kim, K.-W.; Russell, T. P. Transition Behavior of Block Copolymer Thin Films on Preferential Surfaces. Macromolecules 2008, 41 (23), 9140-9145.
    [40] Kim, E.; Ahn, H.; Ryu, D. Y.; Kim, J.; Cho, J. Transition Behavior of Weakly Interacting PS-b-PMMA Films on Preferential Surfaces: A Direct Observation by Gisaxs. Macromolecules 2009, 42 (21), 8385-8391.
    [41] Kim, E.; Choi, S.; Guo, R.; Ryu, D. Y.; Hawker, C. J.; Russell, T. P. Transition Behavior of PS-b-PMMA Films on the Balanced Interfacial Interactions. Polymer 2010, 51 (26), 6313-6318.
    [42] Kim, Y.; Yong, D.; Lee, W.; Ahn, H.; Kim, J. H.; Kim, J. U.; Ryu, D. Y. Order-to-Disorder Transition of Lamella-Forming PS-b-P2VP Films Confined between the Preferential Surface and Neutral Substrate. Macromolecules 2019, 52 (22), 8672-8681.
    [43] Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K.-W.; Chang, T.; Ree, M. Structural Analysis of Block Copolymer Thin Films with Grazing Incidence Small-Angle X-Ray Scattering. Macromolecules 2005, 38 (10), 4311-4323.
    [44] Hsu, C.-H.; Yue, K.; Wang, J.; Dong, X.-H.; Xia, Y.; Jiang, Z.; Thomas, E. L.; Cheng, S. Z. D. Thickness-Dependent Order-to-Order Transitions of Bolaform-Like Giant Surfactant in Thin Films. Macromolecules 2017, 50 (18), 7282-7290.
    [45] Hamley, I. W.; Koppi, K. A.; Rosedale, J. H.; Bates, F. S.; Almdal, K.; Mortensen, K. Hexagonal Mesophases between Lamellae and Cylinders in a Diblock Copolymer Melt. Macromolecules 1993, 26 (22), 5959-5970.
    [46] Ahn, J.-H.; Zin, W.-C. Structure of Shear-Induced Perforated Layer Phase in Styrene-Isoprene Diblock Copolymer Melts. Macromolecules 2000, 33 (2), 641-644.
    [47] Park, I.; Lee, B.; Ryu, J.; Im, K.; Yoon, J.; Ree, M.; Chang, T. Epitaxial Phase Transition of Polystyrene-b-Polyisoprene from Hexagonally Perforated Layer to Gyroid Phase in Thin Film. Macromolecules 2005, 38 (25), 10532-10536.
    [48] Heo, K.; Yoon, J.; Jin, S.; Kim, J.; Kim, K.-W.; Shin, T. J.; Chung, B.; Chang, T.; Ree, M. Polystyrene-b-Polyisoprene Thin Films with Hexagonally Perforated Layer Structure: Quantitative Grazing-Incidence X-Ray Scattering Analysis. Journal of Applied Crystallography 2008, 41 (2), 281-291.
    [49] Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. The Gyroid: A New Equilibrium Morphology in Weakly Segregated Diblock Copolymers. Macromolecules 1994, 27 (15), 4063-4075.
    [50] Zhu, L.; Huang, P.; Chen, W. Y.; Weng, X.; Cheng, S. Z. D.; Ge, Q.; Quirk, R. P.; Senador, T.; Shaw, M. T.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. “Plastic Deformation” Mechanism and Phase Transformation in a Shear-Induced Metastable Hexagonally Perforated Layer Phase of a Polystyrene-b-Poly(Ethylene Oxide) Diblock Copolymer. Macromolecules 2003, 36 (9), 3180-3188.
    [51] Jo, S.; Park, H.; Jun, T.; Kim, K.; Jung, H.; Park, S.; Lee, B.; Lee, S.; Ryu, D. Y. Symmetry-Breaking in Double Gyroid Block Copolymer Films by Non-Affine Distortion. Applied Materials Today 2021, 23, 101006.
    [52] Hong, J.-W.; Chang, J.-H.; Chang, I. C.-Y.; Sun, Y.-S. Phase Behavior in Thin Films of Weakly Segregated Block Copolymer/Homopolymer Blends. Soft Matter 2021, 17 (40), 9189-9197.
    [53] Sun, Y.-S.; Jian, Y.-Q.; Yang, S.-T.; Wang, H.-F.; Junisu, B. A.; Chen, C.-Y.; Lin, J.-M. Epitaxial Growth of Surface Perforations on Parallel Cylinders in Terraced Films of Block Copolymer/Homopolymer Blends. Langmuir 2024, 40 (14), 7680-7691.
    [54] Eaton, P.; West, P. Atomic Force Microscopy; Oxford university press, 2010.
    [55] Feidenhans, R. Surface Structure Determination by X-Ray Diffraction. Surface Science Reports 1989, 10 (3), 105-188.
    [56] Steele, J. A.; Solano, E.; Hardy, D.; Dayton, D.; Ladd, D.; White, K.; Chen, P.; Hou, J.; Huang, H.; Saha, R. A. How to Giwaxs: Grazing Incidence Wide Angle X‐Ray Scattering Applied to Metal Halide Perovskite Thin Films. Advanced Energy Materials 2023, 13 (27), 2300760.
    [57] Liu, J.; Yager, K. G. Unwarping Gisaxs Data. IUCrJ 2018, 5 (6), 737-752.
    [58] Yan, Y.; Li, J.; Liu, Q.; Zhou, P. Evaporation Effect on Thickness Distribution for Spin-Coated Films on Rectangular and Circular Substrates. Coatings 2021, 11 (11), 1322.

    無法下載圖示 校內:2026-07-23公開
    校外:2026-07-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE