簡易檢索 / 詳目顯示

研究生: 蔡辰緯
Tsai, Chen-Wei
論文名稱: 探討不同內部結構之微型散熱器於高功率電子元件冷卻之數值分析
Numerical Analysis to Investigate Micro Heat Sink with Different Interior Structure for Cooling High Power Electronic Components
指導教授: 溫昌達
Wen, Chang-Da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 105
中文關鍵詞: 數值模擬微型散熱器內部結構高功率電子元件強制對流3D列印
外文關鍵詞: Numerical simulation, Micro heat sink, Interior Structure, High power electronic component, 3D printing
相關次數: 點閱:92下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今電子產品的設計中,產品微小化是大家所追求的目標,但也由於體積小,與外界進行熱交換的面積會減少許多,因此我們可預知的電子元件單位面積的熱通量也會大幅提升,因此如何設計良好的幾何結構,增加固體熱傳及流體之對流效應為本研究之重點。
    本文藉由Ansys Fluent模擬三維穩態的環境下,微型散熱器於不同內部幾何結構時其強制對流熱傳效應,透過不同模型的比較,提出結構改善的設計理念,並進行一系列的參數分析與討論,瞭解經過結構設計後之流道對於參數的影響性,使得在3D列印此項技術下,能夠有別於以往的製程限制達到新的結構設計。
    根據模擬結果可以得知在內部結構為燒結多孔材料、多孔結構與矩形流道下,溫控能力為燒結多孔材料最佳,但所需付出的壓降遠大於矩形流道,在考量經濟效益的前提下,本文往改善矩形流道幾何結構的方式來進行探討。
    在不同流道幾何結構下,左右漸縮流道擁有壁面最高溫度的抑制能力,波浪形流道則可得到最低的平均壁面溫度;左右漸縮流道之局部熱對流係數變化較為平緩,可瞭解到此結構在壁面溫度的分佈上較為平均,不會因為熱量過度集中於某段部位,而造成熱應力的損壞;於局部熱傳增益值中,左右漸縮流道在流道後段其值有更巨幅地成長,代表有更多的能量能在流道後段被帶走,符合預期設計理念。
    在同一種幫浦功率之下,波浪形流道能得到最大的平均紐賽數,而於FOM結果中所有改善後的流道其值均略小於1,且在左右漸縮流道中,FOM值則會隨著雷諾數變高而有所下降。儘管如此,改善後的結構設計確實能夠得到更佳的溫控效果及緩合壁面的溫度分佈,因此伴隨著3D列印技術的成長與進步,微型散熱器具特殊內部幾何結構設計於電子散熱領域之應用,將具有無限之發展與潛力。

    In this study, several interior structure models are developed to numerically investigate the effects of force convection and heat transfer in micro heat sink which is applied on cooling high power electronic components. These structures include sintered porous material, porous structure and rectangular channel. According to the results, the interior structure with sintered porous material has better operating temperature control ability than the others, but its pressure drop between inlet and outlet is much larger than rectangular channel. So improving rectangular channel geometry is chosen in this study.
    The channel structures are redesigned including trapezoid, right-left(R-L) converged, top-bottom(T-B) converged, and wave geometry. The result shows that R-L converged channel has the best temperature control ability and its local heat transfer coefficient varies smoothly with flow direction, so the electronic component will not fail due to thermal stress concentration. Moreover, with the same pumping power, all the designed channels can get higher nusselt number and lower operation temperature than the rectangular channel. So, with the growth of 3D printing technology, the micro heat sink with different interior structure for cooling high power electronic components will have the unlimited development and potential in the future.

    摘要 I 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVII 符號表 XX 第1章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-2-1 微流道 4 1-2-2 多孔流道 6 1-3 研究動機與目的 9 1-4 全文架構 12 第2章 模型建構 13 2-1 基本物理模型 13 2-2 燒結多孔材料 13 2-3 多孔結構 20 2-4 微流道模型 23 2-4-1 矩形微流道 23 2-4-2 其餘微流道結構設計 23 第3章 理論分析 32 3-1 基本假設 32 3-2 統御方程式 32 3-2-1 燒結多孔材料 33 3-2-2 多孔結構 36 3-2-3 微流道結構 37 3-3 邊界條件 39 3-3-1 流場邊界條件 39 3-3-2 溫度場邊界條件 40 3-4 數值模擬方法 41 3-5 相關物理參數定義 43 3-6 運算方法流程 46 3-7 收斂準則 48 第4章 結果與討論 49 4-1 模擬驗證 49 4-1-1 燒結多孔材料模擬驗證 49 4-1-2 矩形流道模擬驗證 53 4-2 燒結多孔材料、多孔結構、矩形微流道之比較 57 4-2-1 網格獨立測試 57 4-2-2 節點溫度與熱阻之分析 60 4-2-3 壓降與流阻之分析 63 4-3 微流道幾何改變與矩形流道之比較 65 4-3-1 網格獨立測試 65 4-3-2 流道選擇 68 4-3-3 流體阻力與壓降之分析 72 4-3-4 摩擦因子 75 4-3-5 溫度與熱阻之分析 77 4-3-6 熱對流係數與紐賽數 81 4-3-7 熱傳增益與溫度增益指標 87 4-3-8 效能指標FOM(Figure of Merit) 93 第5章 結論與未來工作 98 5-1 結論 98 5-2 未來工作 100 文獻回顧 101

    1.何宗漢, “半導體構裝製程簡介,” 國立高雄應用科技大學化學工程與材料工程系, 2012.
    2.L. T. Yeh, “Review of Heat Transfer Technologies in Electronic Equipment,” Journal of Electronic Packaging, Vol. 117, pp. 333-339, 1995.
    3.黃振東, “台灣熱管理產業的回顧與展望,” 工業材料雜誌247期, pp. 77, 2007.
    4.C. P. Wong, and Michelle M. Wong, “Recent Advances in Plastic Packaging of Flip-Chip and Multichip Modules (MCM) of Microelectronics,” IEEE Transactions on Components and Packaging Technology, Vol. 22, pp. 21-25, 1999.
    5.“The Basics of Package Device Cooling,” available: http://www.digikey.co.il/en/pdf/a/aavid-thermalloy/basics-cooling
    6.D. B. Tuckerman, and R. Pease, “High-performance heat sinking for VLSI,” IEEE electron device letters, Vol. 2, pp.126-129, 1981.
    7.W. Qu, and I. Mudawar, “Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 2549-2565, 2002.
    8.K. C. Toh, X. Y. Chen, and J. C. Chai, “Numerical computation of fluid flow and heat transfer in microchannels,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 5133-5141, 2002.
    9.M. E. Steinke, and S. G. Kandlikar, “Single-phase liquid friction factors in microchannels,” International Journal of Thermal Sciences, Vol. 45, pp. 1073-1083, 2006.
    10.L. Chai, G. D Xia, M. Z. Zhou, and J. Li, “Numerical simulation of fluid flow and heat transfer in a microchannel heat sink with offset fan-shaped reentrant cavities in sidewall,” International Communication in Heat and Mass Transfer, Vol. 38, pp. 577-584, 2011.
    11.G. D. Xia, L. Chai, H. Y. Wang, M. Z. Zhou, and Z. Z. Cui, “Optimum thermal design of microchannel heat sink with triangular reentrant cavities,” Applied Thermal Engineering, Vol. 31, pp. 1208-1219, 2011.
    12.G. D. Xia, L. Chai, M. Z. Zhou, and H. Y. Wang, “Effects of structural parameters on fluid flow and heat transfer in a microchannel with aligned fan-shaped reentrant cavities,” International Journal of Thermal Sciences, Vol. 50, pp. 411-419, 2011.
    13.V. Yadav, K. Baghel, R. Kumar, and S. T. Kadam, “Numerical investigation of heat transfer in extended surface microchannels,” International Journal of Heat and Mass Transfer, Vol. 93, pp. 612-622, 2016.
    14.L. Chai, G. D. Xia, and H. S. Wang, “Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls,” Applied Thermal Engineering, Vol. 92, pp. 32-41, 2016.
    15.P. X. Jiang, G. S. Si, M. Li, and Z. P. Ren, “Experimental and numerical investigation of forced convection heat transfer of air in non-sintered porous media,” Experimental Thermal and Fluid Science, Vol. 28, pp. 545-555, 2004.
    16.P. X. Jiang, M. Li , T. J. Lu, L. Yu, and Z. P. Ren, “Experimental research on convection heat transfer in sintered porous plate channels,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 2085-2096, 2004.
    17.W. H. Hsieh, J. Y. Wu, W. H. Shih, and W. C. Chiu, “Experimental investigation of heat-transfer characteristics of aluminum-foam heat sinks,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 5149-5157, 2004.
    18.G. Hetsroni, M. Gurevich, and R. Rozenbit, “Sintered porous medium heat sink for cooling of high-power mini-devices,” International Journal of Heat and Fluid Flow, Vol. 27, pp. 259-266, 2006.
    19.R. Singh, A. Akbarzadeh, and M. Mochizuki, “Sintered porous heat sink for cooling of high-powered microprocessors for server applications,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 2289-2299, 2009.
    20.P. X. Jiang, and X. C. Lu, “Numerical simulation of fluid flow and convection heat transfer in sintered porous plate channels,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 1685-1695, 2006.
    21.J. Feng, H. Dong, and H. Dong, “Modification of Ergun’s correlation in vertical tank for sinter waste heat recovery,” Powder Technology, Vol. 280, pp. 89-96, 2015.
    22.J. Feng, H. Dong, J. Liu, K. Liang, and J. Gao, “Experimental study of gas flow characteristics in vertical tank for sinter waste heat recovery,” Applied Thermal Engineering, Vol. 91, pp. 73-79, 2015.
    23.N. Dukhan, “Experimental flow in various porous media and reconciliation of Forchheimer and Ergun relations,” Experimental Thermal and Fluid Science, Vol. 57, pp. 425-433, 2014.
    24.Z. L. Zhang, and N. C. MacDonald, “An RIE process for submicron, silicon electro-mechanical structures, ” IEEE Digest of Technical papers, Vol. 91, pp. 520-523, 1991.
    25.温鋐明, “以雙面部分曝光製作封閉型 SU-8 具高低差微流道,” 碩士論文, 國立交通大學精密與自動化工程學程, 2010.
    26.“Enhanced Temperature Device Support,” available: https://www.altera.com/products/common/temperature/ind-temp.html.
    27.陳國聲, 楊天祥, 溫昌達, 屈子正, “積層製造高效能散熱結構與阻尼材料之設計與流固體力學分析,” 成大/臺綜大與工研院聯合學研計畫成果報告, 2015.
    28.K. Vafai, “Handbook of Porous Media,” New York, Marcel Dekker, 2000.
    29.S. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere Series on Computational Methods in Mechanics and Thermal Science, 1980.
    30.ANSYS, “Ansys Fluent. 15.0 Theory Guide,” ANSYS inc, 2013.
    31.J. Lee, and I. Mudawar, “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 452-463, 2007.
    32.R. K. Shah, A. L. London, “Laminar Flow Forced Convection in Ducts,” Adv. Heat Transfer, Supplement 1, Academic Press, New York, 1978.

    下載圖示 校內:2020-08-27公開
    校外:2020-08-27公開
    QR CODE