簡易檢索 / 詳目顯示

研究生: 黃育倫
Huang, Yu-Lun
論文名稱: 抗流型水下遙控載具運動之模擬
The Simulation of Motions for the Anti-Current Underwater Remotely Operated Vehicle
指導教授: 方銘川
Fang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 85
中文關鍵詞: 抗流性PID控制潛航器
外文關鍵詞: PD controller, ROV, anti-current
相關次數: 點閱:55下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水下遙控載具(Remotely Operated Vehicle , ROV)在潛航時易受洋流影響而產生縱向不穩定之現象,導致操作不便與探勘效益降低。為改善此現象並提升載具之縱向穩定性,本文主要以DEEP OCEAN公司所生產的ROV ( Triggerfish )為研究對象,透過時程數值模擬分析法,再導入PD與PID控制器以研究其在洋流中之運動反應及相關之修正增益值。本研究之理論模式為利用ROV潛航於水下之運動方程式,結合4th -Order Runge-Kutta method、multi-steps shooting method等數值分析方法,配合利用PMM試驗所求取的操縱性導數,並考量臍帶電纜及洋流對潛航器之影響,模擬分析ROV潛航運動穩定度。由研究成果顯示,加入PID控制器可確實達到預定之效果,而PD控制器雖無PID控制器效果好,但也比無控制器更能將ROV姿態穩定使其達到較好的工作效率,且未來可將此技術應用於成大-中山所研發的ROV上,對於增加潛航器穩定度與抗流性應有相當大之助益。

    Because of the current effect, the behaviors of the underwater remotely operated vehicle will be affected especially for the longitudinal stability. Consequently the efficiency of the operating the underwater ROV will be decreased. In the present paper, a numerical model including the PD or PID control is established to simulate the ROV motions in currents. The related suitable gains of the controller are obtained by trial and error. The numerical technique including 4th order Runge Kutta method and multi-steps shooting method is adopted to solve the equations of motions with two ends boundary values problem due to the cable effect. The related maneuvering hydrodynamic coefficients of the ROV were obtained by PMM technique. From the present results, we find that the PID controller is superior to the PD controller and indeed can improve the longitudinal stability, i.e. reduce the pitch motion. Therefore the technique developed in the present study can be regarded as an useful tool for improving the anti-current ability of the ROV while it is operating in currents.

    中文摘要 I 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 ⅩⅡ 表目錄 XV 圖目錄 XVI 符號說明 XXI 第一章 緒論 1 1-1 引言 1 1-2 研究動機與目的 1 1-3 文獻回顧 2 1-4 論文架構 4 第二章 潛航器動態方程式描述與PID運算流程 5 2-1大地座標系統與潛航器座標轉換關係式 6 2-2潛航器所受之外力 11 2-2.1纜繩的基本假設 12 2-2.2 纜繩座標 12 2-2.3 纜繩方程式 13 2-2.4纜繩流體力 、 以及 15 2-3推進器所造成的力及力矩 18 2-4 PID方程式介紹及計算流程 21 2-4.1 基本假設 24 2-4.2 PID方程式 24 2-4.3計算流程介紹 26 2-5數值方法撰寫PID 增益值最佳化程式 27 2-5.1 PID增益值最佳化之比較 29 2-6洋流計算方程式 33 第三章 模擬結果與探討 35 3-1 U=0 m/s下探討有無控制器的縱搖、平擺角度的影響 40 3-1.1基本假設 40 3-1.2直線前進航行運動 40 3-1.3直線前進上浮運動 41 3-1.4直線前進下潛運動 41 3-1.5純上浮運動 42 3-1.6純下潛運動 43 3-1.7純側移運動 43 3-2 U=0 .5m/s均勻流下探討有無控制器的縱搖、平擺角度的影響 44 3-2.1基本假設 44 3-2.2直線前進航行運動 44 3-2.3直線前進上浮運動 45 3-2.4直線前進下潛運動 45 3-2.5純上浮運動 46 3-2.6純下潛運動 46 3-2.7純側移運動 47 3-3 U=1m/s 均勻流下探討有無控制器的縱搖、平擺角度的影響 48 3-3.1基本假設 48 3-3.2直線前進航行運動 48 3-3.3直線前進上浮運動 48 3-3.4直線前進下潛運動 49 3-3.5純上浮運動 49 3-3.6純下潛運動 50 3-3.7純側移運動 51 3-4 潛航器運動結果分析 51 第四章 實際應用於潛航器 73 4-1應用至自行研發潛航器上 73 4-2 實際實驗結果與分析 76 4-2.1波高10CM、週期2 Sec 77 4-2.2波高20CM、週期2 Sec 77 4-2.3波高30CM、週期2 Sec 77 第五章 結論與未來展望 81 參考文獻 82 自述 86 表目錄 表 2-1 潛航器六度運動模式 7 表 3-1 ROV Triggerfish基本資料 36 表 3-2 推進器輸出RPS一覽表(洋流= 0 m/s) 37 表 3-3 推進器輸出RPS一覽表(洋流= 0.5 m/s) 38 表 3-4 推進器輸出RPS一覽表(洋流= 1 m/s) 39 表 3-5 控制器優劣比較表 53 表 4-1 ROV基本資料 74 圖目錄 圖2-1大地座標與潛航器座標示意圖 7 圖2-2 ROV之自由體圖(free body diagram) 12 圖2-3 臍帶電纜靜力計算座標系圖 13 圖2-4 作用在臍帶電纜單位長度上外力 17 圖2-5 臍帶電纜上流體力 17 圖2-6 ROV 推進器前視圖 18 圖2-7 ROV 推進器俯視圖 19 圖2-8 PD控制(洋流=1 m/s,直線前進) 22 圖2-9 PI控制(洋流=1 m/s,直線前進) 23 圖2-10最佳化計算流程 30 圖2-11 PID控制(洋流=1 m/s,直線前進) 31 圖2-12 PID控制(洋流=1 m/s,直線前進 SCGM) 32 圖2-13電 腦 計 算 流 程 圖 34 圖3-1 ROV(DEEP OCEAN TRIGGERFISH) 36 圖3-2 PD控制(洋流=0 m/s,直線前進,無定深控制) 54 圖3-3 PID控制(洋流=0 m/s,直線前進,無定深控制) 54 圖3-4無控制(洋流=0 m/s,直線前進) 55 圖3-5 PD控制(洋流=0 m/s,直線前進) 55 圖3-6 PID控制(洋流=0 m/s,直線前進) 55 圖3-7無控制(洋流=0 m/s,前進上浮) 56 圖3-8 PD控制(洋流=0 m/s,前進上浮) 56 圖3-9 PID控制(洋流=0 m/s,前進上浮) 56 圖3-10無控制(洋流=0 m/s,前進下潛) 57 圖3-11 PD控制(洋流=0 m/s,前進下潛) 57 圖3-12 PID控制(洋流=0 m/s,前進下潛) 57 圖3-13無控制(洋流=0 m/s,純上浮) 58 圖3-14 PD控制(洋流=0 m/s,純上浮) 58 圖3-15 PID控制(洋流=0 m/s,純上浮) 58 圖3-16無控制(洋流=0 m/s,純下潛) 59 圖3-17 PD控制(洋流=0 m/s,純下潛) 59 圖3-18 PID控制(洋流=0 m/s,純下潛) 59 圖3-19無控制(洋流=0 m/s,純側移) 60 圖3-20 PD控制(洋流=0 m/s,純側移) 60 圖3-21 PID控制(洋流=0 m/s,純側移) 60 圖3-22無控制(洋流=0.5 m/s,直線前進) 61 圖3-23 PD控制(洋流=0.5 m/s,直線前進) 61 圖3-24 PID控制(洋流=0.5 m/s,直線前進) 61 圖3-25無控制(洋流=0.5 m/s,前進上浮) 62 圖3-26 PD控制(洋流=0.5 m/s,前進上浮) 62 圖3-27 PID控制(洋流=0.5 m/s,前進上浮) 62 圖3-28 無控制(洋流=0.5 m/s,前進下潛) 63 圖3-29 PD控制(洋流=0.5 m/s,前進下潛) 63 圖3-30 PID控制(洋流=0.5 m/s,前進下潛) 63 圖3-31 無控制(洋流=0.5 m/s,純上浮) 64 圖3-32 PD控制(洋流=0.5 m/s,純上浮) 64 圖3-33 PID控制(洋流=0.5 m/s,純上浮) 64 圖3-34 無控制(洋流=0.5 m/s,純下潛) 65 圖3-35 PD控制(洋流=0.5 m/s,純下潛) 65 圖3-36 PID控制(洋流=0.5 m/s,純下潛) 65 圖3-37 無控制(洋流=0 m/s,純側移) 66 圖3-38 PD控制(洋流=0 m/s,純側移) 66 圖3-39 PID控制(洋流=0 m/s,純側移) 66 圖3-40 無控制(洋流=1 m/s,直線前進) 67 圖3-41 PD控制(洋流=1 m/s,直線前進) 67 圖3-42 PID控制(洋流=1 m/s,直線前進) 67 圖3-43 無控制(洋流=1 m/s,直線上浮) 68 圖3-44 PD控制(洋流=1 m/s,直線上浮) 68 圖3-45 PID控制(洋流=1 m/s,直線上浮) 68 圖3-46 無控制(洋流=1 m/s,直線下潛) 69 圖3-47 PD控制(洋流=1 m/s,直線下潛) 69 圖3-48 PID控制(洋流=1 m/s,直線下潛) 69 圖3-49 無控制(洋流=1 m/s,純上浮) 70 圖3-50 PD控制(洋流=1 m/s,純上浮) 70 圖3-51 PID控制(洋流=1 m/s,純上浮) 70 圖3-52 無控制(洋流=1 m/s,純下潛) 71 圖3-53 PD控制(洋流=1 m/s,純下潛) 71 圖3-54 PID控制(洋流=1 m/s,純下潛) 71 圖3-55 無控制(洋流=1 m/s,純側移) 72 圖3-56 PD控制(洋流=1 m/s,純側移) 72 圖3-57 PID控制(洋流=1 m/s,純側移) 72 圖4-1 潛航器實體 74 圖4-2 潛航器Pitch角度偵測器 75 圖4-3 水下電腦控制介面(Quick C language) 75 圖4-4 岸上電腦控制介面 76 圖4-5 拖航水槽 76 圖 4-6 波高10CM、週期2 Sec 無控制器 78 圖 4-7 波高10CM、週期2 Sec PD控制器 78 圖 4-8 波高20CM、週期2 Sec 無控制器 79 圖 4-9 波高20CM、週期2 Sec PD控制器 79 圖 4-10 波高30CM、週期2 Sec 無控制器 80 圖 4-11 波高30CM、週期2 Sec PD控制器 80

    【1】Cheng C. H., Chang M. H “A Simplified Conjugate-Gradient Method for
    Shape Identification Based on Thermal Data” Numerical Heat Transfer, Part B, Vol. 43,pp. 489-507, 2003

    【2】Cheng S. C., Lau M.W.S., Low E., Seet G.G.L., “A Cascaded Nonlinear Heading Control with Thrust Allocation: An Application on an Underactuated Remotely Operated Vehicle”, IEEE Conference on Robotics Automation and Mechatronics, Dec.2006.
    【3】C. Silvestre, A. Pascoal, “Depth control of the INFANTE AUV using gain-scheduled reduced order output feedback,” Control Engineering Practice,Vol.15, pp. 883-895 ,July 2007.
    【4】Ji H. L. and Pan M. L. “A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle,” Robotics and Autonomous Systems, Vol. 52, pp.132-147
    August 2005.
    【5】Kim T.W., Yuh J, “Application of on-line neuro-fuzzy controller to
    AUVs,” Information Sciences, Aug 2002.
    【6】Koh T.H., Lau M.W.S., Low E., Seet G., Swei S., Cheng P.L.,
    Oceans MTS/IEEE, Vol. 4, pp.2039 - 2044, Oct. 2002.
    【7】Nguyen Q. H. , Edwin K., “Adaptive PD-controller for positioning of a remotely operated vehicle close to an underwater structure: Theory and experiments,” Control Engineering Practice,Vol.15, pp. 411- 419, April 2007.
    【8】Rife J.H., Rock S.M.,“Design and Validation of a Robotic Control Law for Observation of Deep-Ocean Jellyfish,” IEEE Transactions on Robotics and Automation, Vol.22, pp.282 - 291, April 2006
    【9】Rentschler M.E., Hover F.S., Chryssostomidis C., “System identification of open-loop maneuvers leads to improved AUV flight performance,”
    Oceanic Engineering IEEE Journal of, Vol. 31, pp.200 - 208, Jan. 2006.
    【10】Silvia M. Z. and Giuseppe C.,“Remotely operated vehicle depth control,”Control Engineering Practice, Vol. 11, pp. 453-459,
    April 2003.
    【11】Savaresi S.M., Previdi F., Dester A., Bittanti S., Ruggeri A.,
    “Modeling, identification, and analysis of limit-cycling pitch and
    heave dynamics in an ROV,” Oceanic Engineering IEEE Journal of,
    Vol. 29, pp.407 - 417, April 2004.
    【12】THOR I. FOSSEN, “Guidance and Control of Ocean Vehicles”, John
    Wiley, pp.259 – 262, 1994.
    【13】Whitcomb L.L., Yoerger D.R., “Preliminary experiments in model-based thruster control for underwater vehicle positioning,” Oceanic Engineering IEEE Journal of, Vol.24, pp.495 – 506, Oct. 1999.
    【14】Xiaocheng S., Huashen X., Chunguo W., Zonghu C.,“A new model of fuzzy CMAC network with application to the motion control of AUV,” IEEE Conference, Vol.4, pp.2173 - 2178, Aug. 2005.
    【15】Yuh, J., Lakshmi, R.,“An intelligent control system for remotely operated vehicles,”Oceanic Engineering IEEE Journal of, Vol. 18,
    pp.55 - 62, Jan. 1993.
    【16】王建宏;邊信黔;唐照東;施小成;丁福光,大範圍環境下自主式水下潛器兩種全局路徑規劃方法的研究,中國造船,Vol.45, NO.3, Serial No.166, pp.78 - 83, Sep.2004
    【17】李俊;徐德民;宋保維;嚴衛生,自主式水下潛器導航技術發展現狀與展望,中國造船,Vol.45, NO.3, Serial No.166, pp.70 - 77, Sep.2004。
    【18】朱繼懋,潛水器設計,上海交通大學出版社, July 1991。
    【19】金鴻章;王科俊;梁超,具有橫搖補償控制的潛艇航向變結構控制,中國造船,Vol.42, NO.2, Serial No.153, pp.75 - 80, June 2001。
    【20】侯章祥,臍帶電纜及洋流對潛航器運動之影響,國立成功大學系統及船舶機電工程學系碩士論文,民國九十四年六月。
    【21】國家海洋科學研究中心網站:http://www.ncor.ntu.edu.tw/
    【22】張培恩,波浪對潛航器運動之影響及控制分析,國立成功大學系統及船舶機電工程學系碩士論文,民國九十三年六月。
    【23】費乃振;楊文明;郭斌仙;朱文蔚;王文富;繆國平,遙控自航船模舵檢搖試驗研究,中國造船,NO.2, Serial No.141, pp.50 - 52, May 1998。
    【24】鍾金福,ROV--遙控潛水器數據傳輸系統,中國造船,No.1, Serial No.124, pp.88 - 94, Feb.1994。
    【25】戴學豐;邊信黔;嚴浙平,無人水下潛器定位控制過程的DES建模與簡化,中國造船,Vol.42, NO.3, Serial No.154, pp.39 - 42, Sep.2001。

    下載圖示 校內:立即公開
    校外:2007-08-03公開
    QR CODE