簡易檢索 / 詳目顯示

研究生: 陳宣穎
Chen, Syuan-Ying
論文名稱: 冷原子系綜中 V 型電磁誘發透明的理論與實驗研究
Theoretical and Experimental Investigation of V-Type Electromagnetically Induced Transparency in Cold Atomic Ensembles
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 101
中文關鍵詞: V 型電磁誘發透明冷原子系綜寬頻傳輸量子轉頻
外文關鍵詞: V-type electromagnetically induced transparency, cold atomic ensembles, broadband transmission, quantum frequency conversion
相關次數: 點閱:51下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電磁誘發透明(EIT)是一種基於量子干涉效應的非線性光學現象,廣泛應用於光學存儲、量子信息處理與頻率轉換等領域。本研究聚焦於冷原子系綜中的 V 型 EIT 效應,結合理論與實驗進行了深入探索,發現實驗觀察與半古典理論預測有良好吻合。在 V 型量子干涉效應的作用下,即使耦合光場受到共振耗散影響,探測光場仍能被有效保護,避免吸收,從而以極小損耗穿透原子系綜。這種交互作用突顯了 V 型 EIT 在冷原子系綜中實現高穿透光學傳輸的潛力。我們針對 V 型 EIT 的光譜特性與短脈衝動態進行了全面的實驗和理論分析。通過系統地改變原子系綜的光學深度、耦合光的拉比頻率以及失諧量,我們詳細研究了這些參數對介質光譜展寬與短脈衝動態的影響,並展現了 V 型 EIT 介質的寬頻光傳輸特性。此外,本研究進一步探討了 V 型 EIT 介質的高穿透與寬頻特性在基於鑽石型躍遷結構的高效量子轉頻中提升轉換效率與保持相干性的作用。

    Electromagnetically Induced Transparency (EIT) is a nonlinear optical phenomenon based on quantum interference, widely applied in optical storage, quantum information processing, and frequency conversion. This study focuses on V-type EIT in cold atomic ensembles, combining theoretical analysis and experimental validation. The results demonstrate excellent agreement between experimental observations and predictions from a semiclassical theoretical model. Under the influence of V-type quantum interference, the coupling field, even when subject to resonant dissipation, effectively protects the probe field from absorption, allowing it to propagate through the atomic ensemble with minimal loss. This interaction highlights the unique potential of V-type EIT for achieving high-transmission optical propagation in cold atomic systems. We conducted a comprehensive theoretical and experimental analysis of the spectral properties and short-pulse dynamics of V-type EIT. By systematically varying key parameters, including the optical depth of the atomic ensemble, the Rabi frequency of the coupling field, and its detuning, we investigated the impact of these parameters on spectral broadening and short-pulse dynamics, demonstrating the broadband transmission characteristics of the V-type EIT medium. Furthermore, this study explores the role of the high-transmission and broadband properties of V-type EIT in enhancing conversion efficiency and preserving coherence in quantum frequency conversion systems with Diamond-type transitions.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables vi List of Figures vii Nomenclature xii Chapter 1. Introduction 1 Chapter 2. Fundamental theory 3 2.1. Semiclassical Framework 3 2.2. Ensembles of Quantum States 3 2.3. Liouville-von Neumann Equation 4 2.4. Optical Bloch Equation for Atoms at Rest 5 2.5. Atom-Field Interaction Hamiltonian 7 2.6. Maxwell-Schrödinger Equation 13 2.7. Two-Level Atom Systems 17 2.7.1. Intrinsic Hamiltonian of Atoms 17 2.7.2. Rotating-Wave Approximation (RWA) 18 2.7.3. First-Order Perturbation and Analytical Steady-State Solution 19 2.7.4. Transmission and Phase Shift of the Light Field 23 2.8. Three-Level Atom Systems 25 2.8.1. Electromagnetically Induced Transparency (EIT) 25 2.9. V-type EIT 32 2.9.1. Maxwell-Schrödinger Equation Solution for the Light Field 35 Chapter 3. Experimental System 46 3.1. Diode Laser and External-Cavity Diode Laser (ECDL) 46 3.1.1. Laser Stabilization System 47 3.2. Magneto-Optical Trap (MOT) 49 3.3. Dark MOT and Dark Spontaneous-Force Optical Trap 53 3.4. AOM Control 53 3.5. Cold Rubidium Atoms 53 3.6. Experimental Method about Confirming Optical Depth 54 3.7. Energy Level Selection and Experimental Setup 59 3.8. Timing Sequence 61 Chapter 4. Results and Discussion 64 4.1. Comparative Analysis of Λ-type EIT 64 4.2. Short-Pulse Dynamics in V-type EIT 70 4.3. Spectral Properties of V-type EIT 72 Chapter 5. Conclusion and Outlook 81 References 83

    [1] Sher Alam. Lasers without inversion and electromagnetically induced transparency.SPIE Optical Engineering Press, 1st edition, 1999.
    [2] Aidan Arnold. Preparation and Manipulation of an 87Rb Bose-Einstein Condensate.
    [3] Julian Schwinger (Author) and Berthold-G. Englert (Editor). Quantum Mechanics:Symbolism of Atomic Measurements. Springer, revised edition, 2001.
    [4] M. Bajcsy, A. Zibrov, and M. Lukin. Stationary pulses of light in an atomic medium. Nature, 426:638–641, 2003.
    [5] Jean-L. Basdevant and Jean Dalibard. The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics. Springer, 2nd edition, 2005.
    [6] Paul R. Berman and Vladimir S. Malinovsky. Principles of Laser Spectroscopy and Quantum Optics. Princeton University Press, 1st edition, 2011.
    [7] J.D. Bjorken and S.D. Drell. Relativistic Quantum Fields. McGraw-Hill, New York, 1965.
    [8] K.-J. Boller, A. Imamoğlu, and S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 66:2593–2596, May 1991.
    [9] H.-P. Breuer and F. (Francesco) Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 2007.
    [10] Heinz-P. Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 1st edition, 2002.
    [11] Lectures by M.D. Lukin and Notes typed by L. Childress. https://reurl.cc/d1vEaz.
    [12] Yong-Fan Chen. Lecture notes of Modern Optics and AMO.
    [13] NIST Atomic Spectral Database. https://reurl.cc/RL87jn.
    [14] Doctoral dissertation by Chin-Yao Cheng. Quantum Frequency Conversion Based on Resonant-Type Quantum Nonlinear Optics. National Cheng Kung University, 2021.
    [15] Doctoral dissertation by Yi-Hsin Chen. All-optical switching based on motionaless light pulses. National Tsing Hua University, 2011.
    [16] Doctoral dissertation by Yong-Fan Chen. Storage and Manipulation of Photonic Information with Slow Light Effect. National Tsing Hua University, 2005.
    [17] Robert M. Eisberg. Fundamentals of Modern Physics. Mei Ya Publications, Taipei, 1972.
    [18] Po-Han Tseng et al. Quantum interface for telecom frequency conversion based on diamond-type atomic ensembles. Phys. Rev. A, 109:043716, 2024.
    [19] R. Finkelstein, S. Bali, O. Firstenberg, and I. Novikova. A practical guide to electromagnetically induced transparency in atomic vapor. New Journal of Physics, 25(3):035001, March 2023.
    [20] M. Fleischhauer, A. Imamoglu, and J. P. Marangos. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 77:633–673, Jul 2005.
    [21] M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett., 84:5094–5097, May 2000.
    [22] M. Fleischhauer and M. D. Lukin. Quantum memory for photons: Dark-state polaritons. Phys. Rev. A, 65:022314, 2002.
    [23] Mark (Anthony Mark) Fox. Quantum Optics : An Introduction. Oxford University Press, 2006.
    [24] Jerrold Franklin. Classical Electromagnetism. Dover Publications, revised 2nd edition, 2017.
    [25] David J. Fulton, Sara Shepherd, Richard R. Moseley, Bruce D. Sinclair, and Malcolm H. Dunn. Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems. Phys. Rev. A, 52:2302–2311, Sep 1995.
    [26] Christopher C. Gerry and Peter L. Knight. Introductory Quantum Optics. Cambridge University Press, Cambridge, UK , 2005.
    [27] N. Gisin and I. C. Percival. The quantum-state diffusion model applied to open systems. Journal of Physics A: Mathematical and General, 25(21):5677, nov 1992.
    [28] Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics. Pearson, 3rd edition, 2001.
    [29] S. E. Harris, J. E. Field, and et al. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64:1107–1110, 1990.
    [30] S. E. Harris, J. E. Field, and A. Kasapi. Dispersive properties of electromagnetically induced transparency. Phys. Rev. A, 46:R29–R32, Jul 1992.
    [31] R. Holzinger, L. Ostermann, and H. Ritsch. Subradiance in multiply excited states of dipole-coupled v-type atoms. Europhysics Letters, 128(4):44001, Jan 2020.
    [32] B. L. Hu and E. A. Calzetta. Nonequilibrium quantum field theory. Cambridge University Press, Cambridge, UK, 2008.
    [33] H. H. Jen, G.-D. Lin, and Y.-C. Chen. Resonant dipole-dipole interactions in electromagnetically induced transparency. Phys. Rev. A, 105:063711, Jun 2022.
    [34] Hyun-Jong Kang and Heung-Ryoul Noh. Coherence effects in electromagnetically induced transparency in v-type systems of 87Rb. Opt. Express, 25(18):21762–21774, Sep 2017.
    [35] W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett., 70:2253–2256, Apr 1993.
    [36] Yeong-Cherng Liang, 2024. Lecture notes of Quantum Information.
    [37] M. D. Lukin. Colloquium: Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys., 75:457–472, Apr 2003.
    [38] Istvan Mezo. The Lambert W Function: Its Generalizations and Applications. CRC Press, New York, 2022.
    [39] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 10th anniversary edition, 2016.
    [40] Marlan O. Scully and M. Suhail Zubairy. Quantum Optics. Cambridge University Press, 1st edition, 1997.
    [41] Master’s thesis by Jian-Ting Xiao. High-efficiency backward resonant four-wave mixing by quantum interference. National Cheng Kung University, 2017.
    [42] Master’s thesis by Pei-Chen Guan. Role of degenerate Zeeman states in the slow light and light storage. National Tsing Hua University, 2007.
    [43] Master’s thesis by Tsai-Ni Wang. Quasi-phase-matching slow light propagation in efficient four-wave mixing media. National Cheng Kung University, 2020.
    [44] Master’s thesis by Yin-Cheng Lee. Study on Slow Light Effect Based on Electromagnetically Induced Transparency in Λ- V- and Cascade-Type Transitions. National Cheng Kung University, 2023.
    [45] Master’s thesis by Yu-Wei Cheng. Setup and Optimization of Rubidium Magnetooptical Trap. National Cheng Kung University, 2009.
    [46] A. C. Wilson and et al. Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier. Appl. Opt., 37(21):4871–4875, Jul 1998.
    [47] Min Xiao, Yong-qing Li, Shao-zheng Jin, and Julio Gea-Banacloche. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett., 74:666–669, Jan 1995.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE