研究生: |
施友超 Shih, You-Chao |
---|---|
論文名稱: |
氧化乙烯-氧化丙烯共聚物高分子膠態電解質搭配磷酸鋰鐵陰極與石墨及二氧化鈦陽極之鋰離子電池測試 Poly(ethylene oxide-co-propylene oxide)-Based Gel Polymer Electrolyte for Lithium Ion Batteries: Performance Tests with LiFePO4-Cathode, graphite- and TiO2-Anodes |
指導教授: |
鄧熙聖
Teng, Hsisheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 鋰離子電池 、氧化乙烯 、氧化丙烯 、膠態高分子電解質 、全電池 、磷酸鋰鐵 、石墨 、二氧化鈦 |
外文關鍵詞: | lithium ion battery, ethylene oxide, propylene oxide, full-cell, LiFeP4, graphite, TiO2 |
相關次數: | 點閱:82 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,我們以PEDGE、DGEBA以及D2000進行交聯合成高分子電解質,也就是P(EO-co-PO)。將製備好的高分子薄膜浸泡於有機電解液中24小時,即可得到膠態高分子電解質(GPE)。將此電解質進行電池組裝測試其性能,並與商業化的隔離膜組裝成有機液相(LE)電池進行性能差異比較並分析我們的膠態高分子電解質優勢。
相對於有機液相電解質,P(EO-co-PO)膠態高分子電解質具備高導離子度(3.82×10-3S cm-1),容易製備成膜以及較佳的電化學穩定電位窗(5V)。除此之外,P(EO-co-PO)高分子具有較佳的鋰鹽解離能力以及較高的鋰離子遷移數(0.7)。擁有較高的鋰離子遷移數可抑制濃度梯度的產生以及對於電極極化阻力的消除是有益的,可使得電解質-電極界面的穩定性相較於有機液相表現較佳,不只阻力值較小且更容易達到穩定,讓電池在測試時可容忍更快速的充放電且擁有較佳的長效穩定性。
電池性能測試方面,我們使用磷酸鋰鐵陰極搭配石墨陽極進行全電池搭配,比較LE與GPE的差異。在低速表現來說,兩者差異其實不大,其值約為125mAh g-1,但當電池放電速度在10C-rate以上時,LE全電池的放電維持率衰減是非常明顯的,相較之下,GPE全電池的放電速度在17C-rate時仍可穩定的進行充放電。除此之外,在長效穩定性測試方面,使用1C-rate進行450圈長效充放電測試,GPE全電池的穩定性直到450圈後尚可維持77%,相較於LE全電池的維持率(44%)來說,表現絕對可以說是非常優秀。
由於石墨陽極在快速充放電的性能表現較差的關係,在本研究中,我們另外發展了水熱法合成二氧化鈦奈米管,二氧化鈦除了有著無毒性、高化學穩定性及價格低廉等優點,藉由奈米管的形成,在快速充放電部分,因為電解液可以深入奈米管中,使得電解液與電極的接觸表面積增加且可減少鋰離子擴散距離,進而減少擴散阻力,使得在進行高速60C-rate充放電時,電池放電量還可以達到70 mAh g-1。
In this study, we used PEDGE, DGEBA and D2000 by cross-linking to synthesis the copolymer –poly(ethylene oxide)-co-poly(propylene oxide) (P(EO-co-PO)). Immersing the polymer film into the organic electrolyte for 24 hours, then we got the gel polymer electrolyte (GPE). Took this GPE film to assemble batteries and test its performance. Compare the difference between GPE and the organic liquid electrolyte battery (LE) , find out the advantages of GPE.
Compare to LE, the proposed GPE has higher ionic conductivity (3.8210-3 S cm-1 at 30 °C) and a wider electrochemical voltage range (5V). Besides, P(EO-co-PO) copolymer equipped better Lithium ion dissociation ability and higher transfer number (0.7). This high GPE transference number decreases electrode polarization caused by anion accumulation and suppresses the concentration gradient to facilitate lithium ion transport. That made the electrolyte-electrode surface of GPE more stable than LE with lower resistance. Therefore, the performance can be better at higher C-rate charge-discharge test and long-term stability.
For battery performance test, we use LiFePO4-cathode and Graphite-anode to assemble the full-cell and compare the difference between GPE and LE. At lower C-rates, the discharge capacity is similar and the value is about 125mAh g-1. When discharge rate is higher than 10 C-rate, the performance decrease dramatically in LE full-cell, while GPE full-cell maintain the capacity even at 17C-rate. For long-term test, we conducted charge-discharge measurement at 1C-rate for 450 cycles. After 450 cycles the capacity retention maintained at ca. 77%. It’s better than the LE full-cell which kept only ca. 44%.
Due to the bad performance at higher C-rates by using Graphite-anode, in this study, we also developed hydrothermal method to synthesis TiO2 nanotube. TiO2 is nontoxic, high chemical stability and low price. Moreover, the nanotube structure can help to catch the electrolyte into the tube, increase the electrolyte-electrode contact surface and decrease the distance of lithium ion diffusion. And then decrease the diffusion resistance, that resulted in a discharge capacity 70 mAh g-1 at 60C-rate.
1. 許雪萍、陳金銘、施得旭,林月微、姚慶意,工業材料126 期, p.104, 1997.
2. R. Bittihn, R. Herr and D. Hoge, “The SWING system, a nonaqueous rechargeable carbon/metal oxide cell”, J. Power Sources, 1993, 223, 43-44.
3. M. S. Whittingham, R. Chen, T. Chirayil and P. Zavalij, “The intercalation and hydrothermal chemistry of solid electrodes”, Solid StateIonics, 1997, 94, 227-238.
4. D. Rahner, S. Machill, H. Schlorb, K. Siury, M. Klob, and W. Plieth, “Intercalation materials for lithium rechargeable batteries”, Solid State Ionics, 1996, 86-88, 891-896.
5. G. T. K. Fey, W. Li and J. R. Dahn, “LiNiVO4: A 4.8 Volt Electrode Material for Lithium Cells”, J. Electrochem. Soc., 1995, 141, 2279-2282.
6. J. O. Besenhard , M. Hess and P. Komeda , “Dimensionally stable Li-alloy electrodes for secondary batteries”, Solid State Ionics , 1990, 40/41 , 525-529.
7. M. Lazzari and B. Scrosati , “A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes”, J. Electrochem. Soc., 1980, 773-774.
8. Y. J. Liou, P. T. Hsiao, L. C. Chen, Y. Y. Chu, H. S. Teng, “Structure and Electron-Conducting Ability of TiO2 Films from Electrophoretic Deposition and Paste-Coating for Dye-Sensitized Solar Cells”, J. Phys. Chem. C, 2011, 115, 25580–25589.
9. S. S. Hwang, C.G. Cho, H. Kim, “Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether”, Electrochem Commun., 2010, 12, 916919.
10. C.M. Yang, H.S. Kim, B.K. Na, K.S.Kum, B.W.Cho, “Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries”, J Power Sources, 2006, 156, 574-580.
11. H. Li, Y.M. Chen, X.T. Ma, J.L. Shi, B.K. Zhu, L.P. Zhu, “Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: Preparation and property of PVDF/poly(dimethylsiloxane) blending membrane”, J Membr. Sci., 2011, 379, 397-402.
12. X.L. Wang, Q. Cai,L.Z. Fan, T. Hua, T.H. Lin, C.W. Na, “Gel-based composite polymer electrolytes with novel hierarchical mesoporous silica network for lithium batteries”, Electrochim Acta 2008, 53, 8001-8007.
13. G.P. Pandey, R.C. Agrawal, S.A. Hashmi, “Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide” J Power Sources, 2009, 190, 563-572.
14. S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, M. Fagnoni, S. Protti, C. Gerbaldi, A. Spinella, “Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid”, J Power Sources, 2010, 195, 559-566.
15. N. Wu, Q. Cao, X. Y. Wang, X. Y. Li, H. Y. Deng, “A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries”, J Power Sources, 2011, 196, 8638-8643.
16. P. Raghavan, J. Manuel, X. H. Zhao, D. S. Kim, J. H. Ahn, C. W. Nah, “Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries”, J Power Sources, 2011, 196, 6742-6749.
17. D. Kumar, S. A. Hashmi, “Ion transport and ion-filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles” J Power Sources, 2010, 195, 5101-5108.
18. Y. F. Wang, X. Y. Ma, Q. L. Zhang, N. Tian, “Synthesis and properties of gel polymer electrolyte membranes based on novel comb-like methyl methacrylate copolymers” J Membr Sci, 2010, 349, 279-286.
19. H. R. Jung, W. J. Lee, “Electrochemical characteristics of electrospun poly(methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery” Electrochim Acta, 2011, 58, 674-680.
20. B. Scrosati, J. Garche, “Lithium batteries: status, prospects and future”, J Power Sources, 2010, 195, 2419-2430.
21. K. Zaghib, P. Charest, A. Guerfi, J. Shim, M. Perrier, K. Striebel, “Safe Li-ion polymer batteries for HEV applications”, J Power Sources, 2004, 134, 124-129.
22. T. Sasaki, K. Ezawa, S. Harada, Y. Fukasawa, T. Kanai, A. Ikeda, J. Rhee, O. Yee, “Lithium ion batteries”, Citi Research, 2012
23. W. H. Meyer, “Polymer Electrolytes for Lithium-Ion Batteries”, Adv. Mater., 1998, 10, 439-447.
24. J. S. Tonge, D. F. Shriver, “Increased Dimensional Stability in Ionically Conducting Polyphosphazenes Systems”, J. Electrochem. Soc., 1987, 134, 269-270.
25. J. F. Fauvarque, “Solid polymer electrolytes based on statistical poly(ethylene oxide-propylene oxide) copolymers”, Electrochimica Acta, 2000, 40(13-14), 2295-2299.
26. A. S. Gozdz, J. M. Tarascon, P. C. Warren, C. N. Schmutz, F. K. Shokoohi, “Proceedings of the Fifth International Symposium on Polymer Electrolyte”, Uppsala, Sweden, 1996, 12, 11-16, .
27. D. F. Shriver, “Polyphosphazenes with Etheric Side Groups: Prospective Biomedical and Solid Electrolyte Polymers”, Macromolecules, 1986, 19, 1508-1512.
28. M. Shibata, T. Kobayash, “Polymer electrolytes based on blends of poly(ether urethane) and polysiloxanes”, European Polymer Journal, 2000, 36, 485-490.
29. T. Fujinami, A. Tokimune, M. A. Mehta, D. F. Shriver, G. C. Rawsky, “Siloxyaluminate Polymers with High Li+ Ion Conductivity”, Chem. Mater., 1997, 9, 2236-2239.
30. B. K. Mandal, C. J. Walsh, T. Sooksimuang, S. J. Behroozi,” New class of single-ion-conducting solid polymer electrolytes derived frompolyphenols “, Chem. Mater., 2000, 12, 6.
31. C. A. Angell, C. Liu, E. Sanzhez, “Rubbery solid electrolye with dominant cationic transport and high ambient conductivity”, Naure, 1993, 362(6416), 137-139.
32. E. R. deAzevedo, D. Reichert, E. L. G. Vidoto, K. Dahmouche, P. Judeinstein, “Motional Heterogeneities in Siloxane/Poly(ethylene glycol) Ormolyte Nanocomposites Studied by 13C Solid-State Exchange NMR”, Chem. Mater., 2003, 15, 2070-2078.
33. P. Judeinstein, M. E. Brik, J. P. Bayle, J. Courtieu,J. Rault,” Mobility Range in Hybrid Materials”, Mater. Res. Soc. Symp. Proc., 1994, 346, 937
34. M. E. Brik, J. J. Titman, J. P. Bayle, P. Judeinstein, “Mapping of Motional Heterogeneity in Organic-Inorganic Nanocomposite Gels”, J. Polym.Sci., Part B: Polym. Phys., 1996, 34, 2533-2542.
35. P. Lesot, S. Chapuis, J. P. Bayle, J. Rault, E. Lafontaine, A. Campero, P. Judeinstein, “Structural–dynamical relationship in silica PEG hybrid gels”, J. Mater. Chem., 1998, 8, 147-151.
36. G. Feullade, Ph. Perche, “Ion-conductive macromolecular gels and membranes for solid lithium cells”, Appl. Electrochem., 1975, 5, 63-69.
37. Y. T. Kim, E. S. Smotkin, “The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries”, Solid State Ionics, 2002, 149, 29-37.
38. Y. Ito, K. Kanehori, K. Miyauchi, T. Kudo, “Ionic conductivity of electrolytes formed from PEO-LiCF3SOa complex with low molecular weight poly(ethylene glycol)”, J. Mater. Sci., 1987, 22, 1845-1849.
39. M. Watanabe, M. Kanba, H. Matsuda,K. Mizoguchi, I. Shinohara, E. Tsuchida,” High Lithium Ionic Conductivity of Polymeric Solid Electrolytes”, Chem.-Rapid. Commun., 1981, 2, 741-744.
40. A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, “Polymeric electrolytic cell separator membrane”, U.S. Patent 5, 1995, 418, 091.
41. A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, “Rechargeable lithium intercalation battery with hybrid polymeric electrolyte”, U.S. Patent 5, 1994, 296, 318.
42. A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, P. C. Warren , “Polymeric electrolytic cell separator membrane”, U.S. Patent 5, 1995, 418, 091.
43. A. S. Gozdz, C. N. Schmutz, P. C. Warren, “Electrolyte activatable lithium-ion rechargeable battery cell”, U.S. Patent 5, 1995, 460, 904.
44. S. S. Sekhon, H. P. Singh, “Ionic conductivity of PVdF-based polymer gel electrolytes”, Solid State Ionics, 2002, 169, 152-153.
45. D. Teeter,A. M. Stephan, “Characterization of PVdF-HFP polymer membranes prepared by phase inversion techniques I. Morphology and charge-discharge studies”, Electrochimica Acta, 2003, 48, 2143-2148.
46. D. W. Kim, Y. K. Sun, “Electrochemical characterization of gel polymer electrolytes prepared with porous membrane”, J. Power Sources, 2001, 102, 41-45.
47. T. Michot, A. Nishimoto, M. Watanabe, “Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer”, Electrochaimica Acta, 2000, 45, 1347-1360.
48. F. Boudin, X. Andrieu, C. Jehoulet, “Microporous PVdF gel for lithium-ion batteries”, J. Power Sources, 1999, 81-82, 804-807.
49. M. Z. A. Munshi(ed.), “Handbook of Solid State Batteries & Capacitor”, World Scientific Publishing Co. Pte. Ltd., 1995.
50. T. Osaka and Madhav(ed.), “Energy Storage System for Electronics”, Gordon and Breach Science Publishers, 2000.
51. W. J. Liang, T. Y. Chen, P. L. Kuo, “Solid polymer electrolytes. VII. Preparation and ionic conductivity of gelled polymer electrolytes based on poly(ethylene glycol) diglycidyl ether cured with ,-diamino poly(propylene oxide)”, J Appl Polym Sci., 2004, 92, 1264-1270.
52. S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., 1938, 60, 390-319.
53. B. D. Cullity, S. R. Stock, “Elements of x-ray diffraction 3rd ed.”, Prentice Hall, 2001.
54. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 1998, 14, 3160.
55. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 1999, 11, 1307.
56. S.W. Choi, J.R. Kim, S.M. Jo, W.S. Lee, Y.-R. Kim, “Electrochemical and Spectroscopic Properties of Electrospun PAN-Based Fibrous Polymer Electrolytes”, Journal of The Electrochemical Society, 2005, 152(5), A989-A995.
57. J. Adebahr, P. Gavelinb, P. Jannaschb, D. Ostrovskiia, B. Wesslenb, P. Jacobssona, “Cation coordination in ion-conducting gels based on PEO-grafted polymers”, Solid State Ionics, 2000, 135, 149-154.
58. M. B. Armand, J. M. Chabagno, M. J. Duclot, “Fast Ion Transport in Solids”, P. Vashishta, J. N. Mundy, and G. K. Shenoy, Editors, p131, NorthHolland, NewYork, 1979.
59. P. L. Kuo, W. J. Liang, T. Y. Chen, “Solid polymer electrolytes V: microstructure and ionic conductivity of epoxide-crosslinked polyether networks doped with LiClO4”, Polymer, 2003, 44, 2957-2964.
60. M. H. Cohen, D. Turnbull, “Molecular transport in liquids and glasses”, J Chem Phys, 1959, 31, 1164-1169.
61. J. Saunier, F. Alloin, J. Y. Sanchez, G. Caillon, “Thin and flexible lithium-ion batteries: investigation of polymer electrolytes”, J Power Sources, 2003, 119-121, 454-459.
62. T. Zhang, N. Imanishi, S. Hasegawa, A. Hirano, J. Xie, Y. Takeda, O. Yamamoto, N. Sammes, “Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte”, J Electrochem Soc., 2008,155(12), A965-969.
63. G. B. Appetecchi, F. Croce, G. Dautzenberg, M. Mastragostino, F. Ronci, B. Scrosati, F. Soavi, A. Zanelli, F. Alessandrini, P. P. Prosini, “Composite polymer electrolytes with improved lithium metal electrode interfacial properties: I. elechtrochemical properties of dry PEO-LiX systems”, J Electrochem Soc., 1998, 145(12), 4126-4132.
64. J. Evans, C. A. Vincent, P. G. Bruce, “Electrochemical measurement of transference numbers in polymer electrolytes” Polymer, 1987, 28, 2324-2328.
65. B. Beak, F. Xu, C. Jung, “Electrolyte distribution-one of the key factors to improve the high-rate performance of gel polymer Li ion batteries”, Solid State Ionics, 2011, 202, 40-44.
66. P. Isken, M. Winter, S. Passerini, A. Lex-Balducci, “Methacrylate based gel polymer electrolyte for lithium-ion batteries”, Journal of Power Sources, 2013, 225, 157-162.
67. S. Oh, D. W. Kima, C. Leea, M. Leeb, Y. Kang, “Poly(vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries”, Electrochimica Acta, 2011, 57, 46-51.
68. H. R. Junga, W. J. Leea, “Electrochemical characteristics of electrospun poly(methylmethacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery”, Electrochimica Acta, 2011, 58, 674-680.
69. W. Xiao, X. Li, H. Guo, Z. Wang, Y. Zhang, X. Zhang, “Preparation of core–shell structural single ionic conductor SiO2@Li+ and its application in PVDF–HFP-based composite polymer electrolyte”, Electrochimica Acta, 2012, 85, 612-621.
70. J. Liu, W. Li, X. Zuo, S. Liu, Z. Li, “Polyethylene-supported polyvinylidene fluorideecellulose acetate butyrate blended polymer electrolyte for lithium ion battery”, Journal of Power Sources, 2013, 226, 101-106.
71. K. Zaghib, K. Striebel, A. Guerfi, J. Shim, M. Armand, M Gauthier, “LiFePO4/polymer/natural graphite: low cost Li-ion batteries”, Electrochimica Acta, 2004, 50, 263-270.
72. K. Zaghib, P. Charest, A. Guerfi, J. Shimb, M. Perrier, K. Striebel, “LiFePO4 safe Li-ion polymer batteries for clean environment”, Journal of Power Sources, 2005, 146, 380-385.
73. Shiro Seki, Katsuhito Takei, Hajime Miyashiro, Masayoshi Watanabe, “Physicochemical and Electrochemical Properties of Glyme-LiN(SO2F)2 Complex for Safe Lithium-ion Secondary Battery Electrolyte”, Journal of The Electrochemical Society, 2011, 158(6), A769-A774.
74. H. Zheng, L. Chaia, X. Songb, V. Battaglia, “Electrochemical cycling behavior of LiFePO4 cathode charged with different upper voltage limits”, Electrochimica Acta, 2012, 62, 256-262.