簡易檢索 / 詳目顯示

研究生: 林品彤
Lin, Pin-Tung
論文名稱: 土壤非標靶代謝體學的樣品萃取與質譜方法評估:以香蕉根圈土壤的代謝體分析為例
Untargeted Metabolomics Analysis of Banana Rhizosphere Soil: Methodological Evaluation of Sample Preparation and Mass Spectrometry
指導教授: 林耀正
Lin, Yao-Cheng
黃兆立
Huang, Chao-Li
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物與微生物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 100
中文關鍵詞: 非標靶代謝體學根圈土壤香蕉黃葉病
外文關鍵詞: Untargeted-metabolomics, Rhizosphere soil, Banana Fusarium wilt
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Extended abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 一、香蕉及香蕉黃葉病概述 1 (一) 香蕉概述 1 (二) 黃葉病病害概述 1 (三) 病原菌生物學 1 (四) 病原菌感染週期 2 (五) 香蕉黃葉病管理與挑戰 4 二、代謝體學 4 (一) 代謝體學簡介 4 (二) 代謝體學分析流程 5 (三) 代謝體學在土壤科學中的應用 8 (四) 土壤非標靶代謝體學挑戰 8 三、研究動機與目的 9 第二章 材料方法 10 一、化學品和材料 10 二、實驗流程 10 三、土壤代謝體學萃取方法及質譜方法評估與優化 13 (一) 萃取方法 13 (二) 層析方法設定 16 (三) 質譜方法設定 16 四、以溫室試驗評估土壤對香蕉於黃葉病之保護效力 18 (一) 溫室試驗土壤來源 18 (二) 溫室試驗流程與土壤採樣時期 19 五、資料分析 22 (一) 質譜數據處理和資料庫比對 22 (二) 統計分析 22 (三) 差異代謝物化學結構預測 24 第三章 結果 25 一、萃取及質譜方法比較 25 (一) 80% MeOH 與 EA 萃取方法及質譜方法比較 25 (二) 實際樣品應用前萃取方法調整 32 二、溫室試驗及代謝體分析結果 34 (一) 土壤對香蕉黃葉病病害之保護作用評估 34 (二) 優化之分析流程應用於香蕉土壤分析 34 (三) 利用統計分析方法找出區分抑病與感病土壤的差異代謝物 37 (四) 整合萃取策略下的差異代謝物代謝路徑富集分析 42 (五) 利用不同模型評估穩定差異代謝物之區分能力 46 第四章 討論 52 一、土壤代謝體分析的技術挑戰與萃取策略比較 52 二、EA 和純水萃取策略實際樣品應用 53 三、深入探討差異代謝物在土壤中扮演的角色 54 (一) 代謝路徑富集分析 54 (二) 具有區分兩種土壤能力之穩定差異代謝物 55 (三) 會隨著採樣時期推進而有上升或下降趨勢之穩定差異代謝物 56 四、差異代謝物在土壤病害調節中之潛在角色 57 (一) 抑病土壤中具病害調節潛力之代謝物 57 (二) 感病土壤中具病害調節潛力之代謝物 58 (三) 土壤中潛在污染物 58 第五章 結論 59 第六章 參考文獻 60 附錄 70

    Abhirath, B., Chakraborty, B., Roy, A., & Patel, ADK. Fusarium wilt of tomato. The Pharma Innovation Journal. 11(6S): 744-748, 2020.
    Aftab, A., Yousaf, Z., Javaid, A., Riaz, N., Younas, A., Rashid, M., Shamsheer, HB, Chahel, & Arif, A. Antifungal activity of vegetative methanolic extracts of Nigella sativa against Fusarium oxysporum and Macrophomina phaseolina and its phytochemical profiling by GC-MS analysis. International Journal of Agriculture and Biology, 21(3), 569–576, 2019. https://doi.org/10.17957/IJAB/15.0930
    Ali, A. H., Abdelrahman, M., & El-Sayed, M. A. Alkaloid role in plant defense response to growth and stress. Bioactive Molecules in Plant Defense. 145–158, 2019. https://doi.org/10.1007/978-3-030-27165-7_9
    Aliferis, K. A., & Chrysayi-Tokousbalides, M. Metabolomics in pesticide research and development: Review and future perspectives. Metabolomics, 7(1), 35–53, 2011. https://doi.org/10.1007/s11306-010-0231-x
    Aron, A. T., Gentry, E. C., McPhail, K. L., Nothias, L.-F., Nothias-Esposito, M., Bouslimani, A., Petras, D., Gauglitz, J. M., Sikora, N., Vargas, F., Van Der Hooft, J. J. J., Ernst, M., Kang, K. B., Aceves, C. M., Caraballo-Rodríguez, A. M., Koester, I., Weldon, K. C., Bertrand, S., Roullier, C., & Dorrestein, P. C. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature Protocols, 15(6), 1954–1991, 2020. https://doi.org/10.1038/s41596-020-0317-5
    Bhattacharjya, S., Ghosh, A., Sahu, A., Agnihotri, R., Pal, N., Sharma, P., Manna, M. C., Sharma, M. P., & Singh, A. B. Utilizing soil metabolomics to investigate the untapped metabolic potential of soil microbial communities and their role in driving soil ecosystem processes: A review. Applied Soil Ecology, 195, 105238, 2024. https://doi.org/10.1016/j.apsoil.2023.105238
    Brown, R. W., Reay, M. K., Centler, F., Chadwick, D. R., Bull, I. D., McDonald, J. E., Evershed, R. P., & Jones, D. L. Soil metabolomics—Current challenges and future perspectives. Soil Biology and Biochemistry, 193, 109382, 2024. https://doi.org/10.1016/j.soilbio.2024.109382
    Bubici, G., Kaushal, M., Prigigallo, M. I., Gómez-Lama Cabanás, C., & Mercado-Blanco, J. Biological control agents against Fusarium wilt of banana. Frontiers in Microbiology, 10, 616, 2019. https://doi.org/10.3389/fmicb.2019.00616
    Bushee, J. L., & Argikar, U. A. An experimental approach to enhance precursor ion fragmentation for metabolite identification studies: Application of dual collision cells in an orbital trap. Rapid Communications in Mass Spectrometry, 25(10), 1356–1362, 2011. https://doi.org/10.1002/rcm.4996
    Cañadas, R., González-Miquel, M., González, E. J., Díaz, I., & Rodríguez, M. Evaluation of bio-based solvents for phenolic acids extraction from aqueous matrices. Journal of Molecular Liquids, 338, 116930, 2011. https://doi.org/10.1016/j.molliq.2021.116930
    Moldoveanu, SC, & David, V.. Derivatization methods in GC and GC/MS. In P. Kusch (Ed.), Gas Chromatography—Derivatization, Sample Preparation, Application, 2019. https://doi.org/10.5772/intechopen.81954
    Chen, C., Lee, D., Yu, J., Lin, Y., & Lin, T. Recent advances in LC‐MS‐based metabolomics for clinical biomarker discovery. Mass Spectrometry Reviews, 42(6), 2349–2378, 2023. https://doi.org/10.1002/mas.21785
    Chen, Y., Li, E.-M., & Xu, L.-Y. Guide to metabolomics analysis: a bioinformatics workflow. Metabolites, 12(4), 357, 2022 https://doi.org/10.3390/metabo12040357
    Chu, L., Pan, K., Wu, F. Z., Tao, L., & Wang, Y. Effects of hexadecanoic acid on Fusarium oxysporum f. Sp. Niveum control and on growth of watermelon (Citrullus lanatus). Allelopathy Journal, 34(2), 241–252, 2014.
    Dahuja, A., Kumar, R. R., Sakhare, A., Watts, A., Singh, B., Goswami, S., Sachdev, A., & Praveen, S. Role of ATP‐binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiologia Plantarum, 171(4), 785–801, 2021. https://doi.org/10.1111/ppl.13302
    Defossez, E., Bourquin, J., Von Reuss, S., Rasmann, S., & Glauser, G. Eight key rules for successful data‐dependent acquisition in mass spectrometry‐based metabolomics. Mass Spectrometry Reviews, 42(1), 131–143, 2023. https://doi.org/10.1002/ mas.21715
    Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G., & Staver, C. P. Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 9, 1468, 2018. https://doi.org/10.3389/fpls.2018.01468
    Drenth, A., & Kema, G. The vulnerability of bananas to globally emerging disease threats. Phytopathology, 111(12), 2146–2161, 2021. https://doi.org/10.1094/PHYTO-07-20-0311-RVW
    Dührkop, K., Fleischauer, M., Ludwig, M., Aksenov, A. A., Melnik, A. V., Meusel, M., Dorrestein, P. C., Rousu, J., & Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods, 16(4), 299–302, 2019. https://doi.org/10.1038/s41592-019-0344-8
    Dührkop, K., Scheubert, K., & Böcker, S. Molecular formula identification with SIRIUS. Metabolites, 3(2), 506–516, 2013. https://doi.org/10.3390/metabo3020506
    EFSA Panel on Plant Health (PLH), Bragard, C., Baptista, P., Chatzivassiliou, E., Di Serio, F., Gonthier, P., Jaques Miret, J. A., Justesen, A. F., MacLeod, A., Magnusson, C. S., Milonas, P., Navas‐Cortes, J. A., Parnell, S., Potting, R., Stefani, E., Thulke, H., Van der Werf, W., Civera, A. V., Yuen, J., Reignault, P. L. Pest categorization of Fusarium oxysporum f. Sp. Cubense Tropical Race 4. EFSA Journal, 20(1), 2022. https://doi.org/10.2903/j.efsa.2022.7092
    Fan, H., He, P., Xu, S., Li, S., Wang, Y., Zhang, W., Li, X., Shang, H., Zeng, L., & Zheng, S.-J. Banana disease-suppressive soil drives Bacillus assembled to defense Fusarium wilt of banana. Frontiers in Microbiology, 14, 1211301, 2023. https://doi.org/10.3389/fmicb.2023.1211301
    Food and Agriculture Organization of the United Nations (FAO). Banana market review 2023.Rome, 2024.
    Frese, C. K., Altelaar, A. F. M., Hennrich, M. L., Nolting, D., Zeller, M., Griep-Raming, J., Heck, A. J. R., & Mohammed, S. Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap velos. Journal of Proteome Research, 10(5), 2377–2388, 2011. https://doi.org/10.1021/pr1011729
    García-Bastidas, F. A., Arango-Isaza, R., Rodriguez-Cabal, H. A., Seidl, M. F., Cappadona, G., Segura, R., Salacinas, M., & Kema, G. H. J. Induced resistance to Fusarium wilt of banana caused by Tropical Race 4 in Cavendish cv Grand Naine bananas after challenging with avirulent Fusarium spp. Plos One, 17(9), e0273335, 2022. https://doi.org/10.1371/journal.pone.0273335
    García-Bastidas, F., Ordóñez, N., Konkol, J., Al-Qasim, M., Naser, Z., Abdelwali, M., Salem, N., Waalwijk, C., Ploetz, R. C., & Kema, G. H. J. First Report of Fusarium oxysporum f. Sp. Cubense Tropical Race 4 associated with Panama disease of banana outside Southeast Asia. Plant Disease, 98(5), 694–694, 2014. https://doi.org/10.1094/PDIS-09-13-0954-PDN
    Godoy, R. C. B. D., Waszczynskj, N., Santana, F. A., Silva, S. D. O. E., Oliveira, L. A. D., & Santos, G. G. D. Physico-chemical characterization of banana varieties resistant to black leaf streak disease for industrial purposes. Ciência Rural, 46(9), 1514–1520, 2016. https://doi.org/10.1590/0103-8478cr20150905
    Grynkiewicz, G., & Gadzikowska, M. Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacological Reports: PR, 60(4), 439–463, 2008.
    Gu, H., Lu, M., Zhang, Z., Xu, J., Cao, W., & Miao, M. Metabolic process of raffinose family oligosaccharides during cold stress and recovery in cucumber leaves. Journal of Plant Physiology, 224–225, 112–120, 2018. https://doi.org/10.1016/j.jplph.2018.03.012
    Gupta, S., Schillaci, M., & Roessner, U. Metabolomics as an emerging tool to study plant–microbe interactions. Emerging Topics in Life Sciences, 6(2), 175–183, 2022. https://doi.org/10.1042/ETLS20210262
    Hamilton, C. D., Steidl, O. R., MacIntyre, A. M., Hendrich, C. G., & Allen, C. Ralstonia solanacearum depends on catabolism of myo-inositol, sucrose, and trehalose for virulence in an infection stage–dependent manner. Molecular Plant-Microbe Interactions, 34(6), 669–679, 2021. https://doi.org/10.1094/MPMI-10-20-0298-R
    Hao, Y., Zhang, Z., Luo, E., Yang, J., & Wang, S. Plant metabolomics: applications and challenges in the era of multi-omics big data. Abiotech. 116–132, 2025. https://doi.org/10.1007/s42994-024-00194-0
    He, W., Cardoso, A. S., Hyde, R. M., Green, M. J., Scurr, D. J., Griffiths, R. L., Randall, L. V., & Kim, D.-H. Metabolic alterations in dairy cattle with lameness revealed by untargeted metabolomics of dried milk spots using direct infusion-tandem mass spectrometry and the triangulation of multiple machine learning models. Analyst, 147(23), 5537–5545, 2022. https://doi.org/10.1039/D2AN01520J
    Hewavitharana, G. G., Perera, D. N., Navaratne, S. B., & Wickramasinghe, I. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review. Arabian Journal of Chemistry, 13(8), 6865–6875, 2020. https://doi.org/10.1016/j.arabjc.2020.06.039
    Holert, J., Cardenas, E., Bergstrand, L. H., Zaikova, E., Hahn, A. S., Hallam, S. J., & Mohn, W. W. Metagenomes reveal global distribution of bacterial steroid catabolism in natural, engineered, and host environments. mBio, 9(1), e02345-17, 2018. https://doi.org/10.1128/mBio.02345-17
    Hugouvieux-Cotte-Pattat, N., & Charaoui-Boukerzaza, S. Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937. Journal of Bacteriology, 191(22), 6960–6967, 2009. https://doi.org/10.1128/JB.00594-09
    Jaeger, C. H., Lindow, S. E., Miller, W., Clark, E., & Firestone, M. K. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Applied and Environmental Microbiology, 65(6), 2685–2690, 1999. https://doi.org/10.1128/AEM.65.6.2685-2690.1999
    Jain, V., & Nainawatee, H. S. Plant flavonoids: signals to legume nodulation and soil microorganisms. Journal of Plant Biochemistry and Biotechnology, 11(1), 1–10, 2002. https://doi.org/10.1007/BF03263127
    Jayaraman, S., Naorem, A. K., Lal, R., Dalal, R. C., Sinha, N. K., Patra, A. K., & Chaudhari, S. K. Disease-suppressive soils—beyond food production: A critical review. Journal of Soil Science and Plant Nutrition, 21(2), 1437–1465, 2021. https://doi.org/10.1007/s42729-021-00451-x
    Jedrychowski, M. P., Huttlin, E. L., Haas, W., Sowa, M. E., Rad, R., & Gygi, S. P. Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Molecular & Cellular Proteomics, 10(12), M111.009910, 2011. https://doi.org/10.1074/mcp.M111.009910
    Johns, C. W., Lee, A. B., Springer, T. I., Rosskopf, E. N., Hong, J. C., Turechek, W., Kokalis-Burelle, N., & Finley, N. L. Using NMR-based metabolomics to monitor the biochemical composition of agricultural soils: A pilot study. European Journal of Soil Biology, 83, 98–105, 2017. https://doi.org/10.1016/j.ejsobi.2017.10.008
    Kaushal, M., Mahuku, G., & Swennen, R. Metagenomic insights of the root colonizing microbiome associated with symptomatic and non-symptomatic bananas in Fusarium wilt infected fields. Plants, 9(2), 263, 2020. https://doi.org/10.3390/plants9020263
    Kim, C. H., Park, J., & Kim, M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Network, 14(6), 277, 2014. https://doi.org/10.4110/in.2014.14.6.277
    Kim, H. K., & Verpoorte, R. Sample preparation for plant metabolomics. Phytochemical Analysis, 21(1), 4–13, 2010. https://doi.org/10.1002/pca.1188
    Kim, Y. J., Kim, J., & Rho, J.-Y. Antifungal activities of Streptomyces blastmyceticus strain 12-6 against plant pathogenic fungi. Mycobiology, 47(3), 329–334, 2019. https://doi.org/10.1080/12298093.2019.1635425
    Kukula-Koch, W. A., & Widelski, J. Alkaloids. Pharmacognosy 163-198, 2017. https://doi.org/10.1016/B978-0-12-802104-0.00009-3
    Kusvuran, S., Dasgan, H. Y., & Abak, K. Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon. The Scientific World Journal, Article ID 253414, 2013. https://doi.org/10.1155/2013/253414
    Li, C., Chen, S., Zuo, C., Sun, Q., Ye, Q., Yi, G., & Huang, B. The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f.sp. Cubense Race 4. European Journal of Plant Pathology, 131(2), 327–340, 2011. https://doi.org/10.1007/s10658-011-9811-5
    Li, Z., Ma, J., Li, J., Chen, Y., Xie, Z., Tian, Y., Su, X., Tian, T., & Shen, T. A biocontrol strain of Serratia plymuthica mm promotes growth and controls Fusarium wilt in watermelon. Agronomy, 13(9), 2437, 2023. https://doi.org/10.3390/agronomy13092437
    Lin, C., Tian, Q., Guo, S., Xie, D., Cai, Y., Wang, Z., Chu, H., Qiu, S., Tang, S., & Zhang, A. Metabolomics for clinical biomarker discovery and therapeutic target identification. Molecules, 29(10), 2198, 2024. https://doi.org/10.3390/molecules29102198
    Lu, Y., Fu, L., Tang, L., Zhang, J., Zhang, Y., Wang, J., Xie, Q., Yang, Z., Fan, C., & Zhang, S. Shifts in short-chain fatty acid profile, Fe (III) reduction and bacterial community with biochar amendment in rice paddy soil. FEMS Microbiology Ecology, 96(4), 2020. https://doi.org/10.1093/femsec/fiaa034
    Lv, N., Tao, C., Ou, Y., Wang, J., Deng, X., Liu, H., Shen, Z., Li, R., & Shen, Q. Root-associated antagonistic Pseudomonas spp. contribute to soil suppressiveness against banana Fusarium wilt disease of banana. Microbiology Spectrum, 11(2), 2023. https://doi.org/10.1128/spectrum.03525-22
    Mazzola, M., & Freilich, S. Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes. Phytopathology, 107(3), 256–263, 2017. https://doi.org/10.1094/PHYTO-09-16-0330-RVW
    Minorsky, P. V. The hot and the classic. Plant Physiology, 131(3), 1159–1160, 2003. https://doi.org/10.1104/pp.900066
    Munakata, Y., Spina, R., Slezack-Deschaumes, S., Genestier, J., Hehn, A., & Laurain-Mattar, D. Screening of endophytic bacteria of Leucojum aestivum ‘gravety giant’ as a potential source of alkaloids and as antagonist to some plant fungal pathogens. Microorganisms, 10(10): 2089, 2022. https://doi.org/10.3390/microorganisms10102089
    Nadiah Jamil, F., Tang, C.-N., Baity Saidi, N., Lai, K.-S., & Akmal Baharum, N. Fusarium wilt in banana: epidemics and management strategies. IntechOpen, Horticultural Crops, 2020. https://doi.org/10.5772/intechopen.89469
    Nehela, Y., Taha, N. A., Elzaawely, A. A., Xuan, T. D., A. Amin, M., Ahmed, M. E., & El-Nagar, A. Benzoic acid and its hydroxylated derivatives suppress early blight of tomato (Alternaria solani) via the induction of salicylic acid biosynthesis and enzymatic and nonenzymatic antioxidant defense machinery. Journal of Fungi, 7(8), 663, 2021. https://doi.org/10.3390/jof7080663
    Niwas, R., Chand, G., & Nath Gupta, R. Fusarium wilt: a destructive disease of banana and their sustainable management. IntechOpen, Fusarium - An Overview of the Genus, 2022. https://doi.org/10.5772/intechopen.101496
    Oh, S.-W., Imran, M., Kim, E.-H., Park, S.-Y., Lee, S.-G., Park, H.-M., Jung, J.-W., & Ryu, T.-H. Approach strategies and application of metabolomics to biotechnology in plants. Frontiers in Plant Science, 14, 1192235, 2023. https://doi.org/10.3389/fpls.2023.1192235
    Olivera, E. R., & Luengo, J. M. Steroids as environmental compounds recalcitrant to degradation: genetic mechanisms of bacterial biodegradation pathways. Genes, 10(7), 512, 2019. https://doi.org/10.3390/genes10070512
    Overy, D. P., Bell, M. A., Habtewold, J., Helgason, B. L., & Gregorich, E. G. “Omics” technologies for the study of soil carbon stabilization: a review. Frontiers in Environmental Science, 9, 2021. https://doi.org/10.3389/fenvs.2021.617952
    Owen, A. G., & Jones, D. L. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry, 33(4–5), 651–657, 2001. https://doi.org/10.1016/S0038-0717(00)00209-1
    Pan, W., Tang, S., Zhou, J., Liu, M., Xu, M., Kuzyakov, Y., Ma, Q., & Wu, L. Plant–microbial competition for amino acids depends on soil acidity and the microbial community. Plant and Soil, 475(1–2), 457–471, 2022. https://doi.org/10.1007/s11104-022-05381-w
    Park, C. H., Park, S.-Y., Lee, S. Y., Kim, J. K., & Park, S. U. Analysis of metabolites in white flowers of Magnolia Denudata Desr. and violet flowers of Magnolia Liliiflora Desr. Molecules, 23(7), 1558, 2018. https://doi.org/10.3390/molecules23071558
    Patel, R., Mehta, K., Prajapati, J., Shukla, A., Parmar, P., Goswami, D., & Saraf, M. An anecdote of mechanics for Fusarium biocontrol by plant growth promoting microbes. Biological Control, 174, 105012, 2022. https://doi.org/10.1016/j.biocontrol.2022.105012
    Patil, C., Calvayrac, C., Zhou, Y., Romdhane, S., Salvia, M.-V., Cooper, J.-F., Dayan, F. E., & Bertrand, C. Environmental metabolic footprinting: A novel application to study the impact of a natural and a synthetic β-triketone herbicide in soil. Science of The Total Environment, 566–567, 552–558, 2016. https://doi.org/10.1016/j.scitotenv.2016.05.071
    Pegg, K. G., Coates, L. M., O’Neill, W. T., & Turner, D. W. The epidemiology of Fusarium wilt of banana. Frontiers in Plant Science, 10, 1395, 2019. https://doi.org/10.3389/fpls.2019.01395
    Pérez-Vicente, L. F., Dita, M. A., & Martinez de la Parte, E. Technical manual prevention and diagnostic of Fusarium wilt (Panama disease) of banana caused by Fusarium oxysporum f. sp. Cubense Tropical Race 4 (TR4). Food And Agriculture Organization of the united nations. 2014. https://www.researchgate.net/publication/273632807
    Pichersky, E., & Raguso, R. A. Why do plants produce so many terpenoid compounds? New Phytologist, 220(3), 692–702, 2018. https://doi.org/10.1111/nph.14178
    Ploetz, R. C. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. Cubense. Phytopathology, 96(6), 653–656, 2006. https://doi.org/10.1094/PHYTO-96-0653
    Ploetz, R. C. Management of Fusarium wilt of banana: A review with special reference to Tropical Race 4. Crop Protection, 73, 7–15, 2015. https://doi.org/10.1016/j.cropro.2015.01.007
    Raaijmakers, J. M., Weller, D. M., & Thomashow, L. S. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Applied and Environmental Microbiology, 63(3), 881–887, 1997. https://doi.org/10.1128/aem.63.3.881-887.1997
    Raman, T., Edwin Raj, E., Muthukathan, G., Loganathan, M., Periyasamy, P., Natesh, M., Manivasakan, P., Kotteeswaran, S., Rajendran, S., & Subbaraya, U. Comparative whole-genome sequence analyses of Fusarium wilt pathogen (Foc R1, STR4 and TR4) infecting Cavendish (AAA) bananas in India, with a special emphasis on pathogenicity mechanisms. Journal of Fungi, 7(9), 717, 2021. https://doi.org/10.3390/jof7090717
    Rhind, S. M., Smith, A., Kyle, C. E., Telfer, G., Martin, G., Duff, E., & Mayes, R. W. Phthalate and alkyl phenol concentrations in soil following applications of inorganic fertiliser or sewage sludge to pasture and potential rates of ingestion by grazing ruminants. Journal of Environmental Monitoring, 4(1), 142–148, 2002. https://doi.org/10.1039/b107539j
    Ristaino, J. B., & Records, A. (Eds.). Emerging plant diseases and global food security. The American Phytopathological Society. 3-11, 2020. https://doi.org/10.1094/9780890 546383
    Roberts, J. M., Carvalhais, L. C., O’Dwyer, C., Rincón‐Flórez, V. A., & Drenth, A. Diagnostics of Fusarium wilt in banana: Current status and challenges. Plant Pathology, 73(4), 760–776, 2024. https://doi.org/10.1111/ppa.13863
    Sarkar, J., Singh, R., & Chandel, S. Understanding LC/MS‐based metabolomics: a detailed reference for natural product analysis. Proteomics – Clinical Applications, 19(1):e202400048, 2025. https://doi.org/10.1002/prca.202400048
    Sartori, M., Nesci, A., Magan, N., & Etcheverry, M. Accumulation of the betaine and ectoine in osmotic stress adaptation of biocontrol agents against Fusarium verticillioides in maize. Agricultural Sciences, 03(01), 83–89, 2012. https://doi.org/10.4236/as.2012.31011
    Sasse, J., Martinoia, E., & Northen, T. Feed your friends: Do plant exudates shape the root microbiome? Trends in Plant Science, 23(1), 25–41, 2018. https://doi.org/10.1016/j.tplants.2017.09.003
    Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D., & McLean, J. A. Untargeted metabolomics strategies – Challenges and emerging directions. Journal of the American Society for Mass Spectrometry, 27(12), 1897–1905, 2016. https://doi.org/10.1007/s13361-016-1469-y
    Sengupta, S., Mukherjee, S., Basak, P., & Majumder, A. L. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Frontiers in Plant Science, 6, 2015. https://doi.org/10.3389/fpls.2015.00656
    Shafi, Z., Ilyas, T., Shahid, M., Vishwakarma, S. K., Malviya, D., Yadav, B., Sahu, P. K., Singh, U. B., Rai, J. P., Singh, H. B., & Singh, H. V. Microbial management of Fusarium wilt in banana: a comprehensive overview, Detection, Diagnosis and Management of Soil-borne Phytopathogens, 413–435, 2023. https://doi.org/10.1007/978-981-19-8307-8_17
    Shen, S., Zhan, C., Yang, C., Fernie, A. R., & Luo, J. Metabolomics-Centered mining of plant metabolic diversity and function: Past decade and future perspectives. Molecular Plant, 16(1), 43–63, 2023. https://doi.org/10.1016/j.molp.2022.09.007
    Shi, X., Zhou, Y., Zhao, X., Guo, P., Ren, J., Zhang, H., Dong, Q., Zhang, Z., Yu, H., & Wan, S. Soil metagenome and metabolome of peanut intercropped with sorghum reveal a prominent role of carbohydrate metabolism in salt-stress response. Environmental and Experimental Botany, 209, 105274, 2023. https://doi.org/10.1016/j.envexpbot.2023.105274
    Siamak, S. B., & Zheng, S. Banana Fusarium wilt (Fusarium oxysporum f. sp. Cubense) control and resistance, in the context of developing wilt-resistant bananas within sustainable production systems. Horticultural Plant Journal, 4(5), 208–218, 2018. https://doi.org/10.1016/j.hpj.2018.08.001
    Song, Y., Yao, S., Li, X., Wang, T., Jiang, X., Bolan, N., Warren, C. R., Northen, T. R., & Chang, S. X. Soil metabolomics: Deciphering underground metabolic webs in terrestrial ecosystems. Eco-Environment & Health, 3(2), 227–237, 2024. https://doi.org/10.1016/j.eehl.2024.03.001
    Souza, A. L., & Patti, G. J. A protocol for untargeted metabolomic analysis: From sample preparation to data processing. Mitochondrial Medicine, 2276, 357–382, 2021. https://doi.org/10.1007/978-1-0716-1266-8_27
    Stincone, P., Pakkir Shah, A. K., Schmid, R., Graves, L. G., Lambidis, S. P., Torres, R. R., Xia, S.-N., Minda, V., Aron, A. T., Wang, M., Hughes, C. C., & Petras, D. Evaluation of data-dependent MS/MS acquisition parameters for non-targeted metabolomics and molecular networking of environmental samples: Focus on the Q Exactive platform. Analytical Chemistry, 95(34), 12673–12682, 2023. https://doi.org/10.1021/acs.analchem.3c01202
    Suresh, A., Praveenkumar, R., Thangaraj, R., Oscar, F. L., Baldev, E., Dhanasekaran, D., and Thajuddin, N. Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Disease, 4, S979–S984, 2014. https://doi.org/10.1016/S2222-1808(14)60769-6
    Swenson, T. L., Jenkins, S., Bowen, B. P., & Northen, T. R. Untargeted soil metabolomics methods for analysis of extractable organic matter. Soil Biology and Biochemistry, 80, 189–198, 2015. https://doi.org/10.1016/j.soilbio.2014.10.007
    Swenson, T. L., & Northen, T. R. Untargeted soil metabolomics using liquid chromatography–mass spectrometry and gas chromatography–mass spectrometry. Microbial Metabolomics, 1859, 97–109, 2019. https://doi.org/10.1007/978-1-4939-8757-3_4
    Theodoulou, F. L., & Kerr, I. D. ABC transporter research: Going strong 40 years on. Biochemical Society Transactions, 43(5), 1033–1040, 2015. https://doi.org/10.1042/BST20150139
    Tugizimana, F., Piater, L., & Dubery, I. Plant metabolomics: A new frontier in phytochemical analysis. South African Journal of Science, 109(5–6), 01–11, 2013.
    Tumlinson, J. H., & Engelberth, J. Fatty acid-derived signals that induce or regulate plant defenses against herbivory. Induced Plant Resistance to Herbivory, 389–407, 2008. https://doi.org/10.1007/978-1-4020-8182-8_19
    Turi, K. N., Romick-Rosendale, L., Ryckman, K. K., & Hartert, T. V. A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma. Journal of Allergy and Clinical Immunology, 141(4), 1191–1201, 2018. https://doi.org/10.1016/j.jaci.2017.04.021
    Upchurch, R. G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters, 30(6), 967–977, 2008. https://doi.org/10.1007/s10529-008-9639-z
    Wang, K., Cui, B., Wang, Y., & Luo, W. Microbial production of ectoine: A review. ACS Synthetic Biology, 14(2), 332–342, 2025. https://doi.org/10.1021/acssynbio.4c00490
    Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W.-T., Crüsemann, M., Boudreau, P. D., Esquenazi, E., Sandoval-Calderón, M., Bandeira, N. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nature Biotechnology, 34(8), 828–837, 2016. https://doi.org/10.1038/nbt.3597
    Wang, X., Li, J., Xu, C., Li, Y., Gong, T., Sun, X., Fu, Y., He, Q., & Zhang, Z. Scopine as a novel brain-targeting moiety enhances the brain uptake of chlorambucil. Bioconjugate Chemistry, 25(11), 2046–2054, 2014. https://doi.org/10.1021/bc5004108
    Wang, Y.-Q., Li, G.-B., Gong, Z.-Y., Li, Y., Huang, F., Fan, J., & Wang, W.-M. Stachyose is a preferential carbon source utilized by the rice false smut pathogen, Villosiclava virens. Physiological and Molecular Plant Pathology, 96, 69–76, 2016. https://doi.org/10.1016/j.pmpp.2016.09.003
    Warren, C. R. Response of osmolytes in soil to drying and rewetting. Soil Biology and Biochemistry, 70, 22–32, 2014. https://doi.org/10.1016/j.soilbio.2013.12.008
    White, R. A., Rivas-Ubach, A., Borkum, M. I., Köberl, M., Bilbao, A., Colby, S. M., Hoyt, D. W., Bingol, K., Kim, Y.-M., Wendler, J. P., Hixson, K. K., & Jansson, C. The state of rhizospheric science in the era of multi-omics: A practical guide to omics technologies. Rhizosphere, 3, 212–221, 2017. https://doi.org/10.1016/j.rhisph.2017.05.003
    Windisch, S., Walter, A., Moradtalab, N., Walker, F., Höglinger, B., El-Hasan, A., Ludewig, U., Neumann, G., & Grosch, R. Role of benzoic acid and lettucenin A in the defense response of lettuce against soil-borne pathogens. Plants, 10(11), 2336, 2021. https://doi.org/10.3390/plants10112336
    Yang, Q., Zhang, A., Miao, J., Sun, H., Han, Y., Yan, G., Wu, F., & Wang, X. Metabolomics biotechnology, applications, and future trends: A systematic review. RSC Advances, 9(64), 37245–37257, 2019. https://doi.org/10.1039/C9RA06697G
    Yang, S., Jansen, B., Absalah, S., Kalbitz, K., & Cammeraat, E. L. H. Selective stabilization of soil fatty acids related to their carbon chain length and presence of double bonds in the Peruvian Andes. Geoderma, 373, 114414, 2020. https://doi.org/10.1016/j.geoderma.2020.114414
    Ying, G.-G., Kookana, R. S., & Ru, Y.-J. Occurrence and fate of hormone steroids in the environment. Environment International, 28(6), 545–551, 2002. https://doi.org/10.1016/S0160-4120(02)00075-2
    Zeki, Ö. C., Eylem, C. C., Reçber, T., Kır, S., & Nemutlu, E. Integration of GC–MS and LC–MS for untargeted metabolomics profiling. Journal of Pharmaceutical and Biomedical Analysis, 190, 113509, 2020. https://doi.org/10.1016/j.jpba.2020.113509
    Zhang, K., Wu, X., Luo, H., Wang, W., Yang, S., Chen, J., Chen, W., Chen, J., Mo, Y., & Li, L. Biochemical pathways and enhanced degradation of dioctyl phthalate (DEHP) by sodium alginate immobilization in MBR system. Water Science and Technology, 83(3), 664–677, 2021. https://doi.org/10.2166/wst.2020.605
    Zhong, C., Hu, C., Xu, C., Zhang, Z., & Hu, G. Metabolomics reveals changes in soil metabolic profiles during vegetation succession in karst area. Frontiers in Microbiology, 15, 1337672, 2024. https://doi.org/10.3389/fmicb.2024.1337672
    Zhu, X.-Q., Li, M., Li, R.-P., Tang, W.-Q., Wang, Y.-Y., Fei, X., He, P., & Han, G.-Y. Rice varieties intercropping induced soil metabolic and microbial recruiting to enhance the rice blast (Magnaporthe Oryzae) Resistance. Metabolites, 14(9), 507, 2024. https://doi.org/10.3390/metabo14090507

    無法下載圖示 校內:2030-07-09公開
    校外:2030-07-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE