簡易檢索 / 詳目顯示

研究生: 黃聖哲
Huang, Sheng-Che
論文名稱: SiO2對奈米級錳鋅鐵氧磁體粉末 燒結及燒結體性質之影響
Effect of SiO2 on Sintering of Mn-Zn Ferrite Nano-Powder and Characteristics of Sintered Bodies
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 135
中文關鍵詞: 鐵氧磁體SiO2燒結溶膠-凝膠法
外文關鍵詞: SiO2, Ferrite, Sintering, Sol-Gel method
相關次數: 點閱:228下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵氧磁體使用於數MHz的高頻範圍時,其渦流損失會急劇增大。為克服此現象,可採用具有飽和磁通密度較高及低鐵損值特點之錳鋅鐵氧磁體。為製備此種鐵氧磁體,本研究選用SiO2為添加劑以溶膠-凝膠吸附法將SiO2加入奈米級錳鋅鐵氧磁體粉末中,並探討SiO2對粉體燒結性(相對燒結密度、收縮率),燒結體之微結構及磁性質之影響。實驗是以矽烷氧化物(TEOS)為SiO2的起始原料,加入錳鋅鐵氧磁體粉末中之方法分為二:即分別於水熱反應前或反應後加入,使TEOS經水解吸附在粉末表面。於水熱反應前加入之AS-X試樣中,這些吸附在粉體表面的矽烷氧化物,會在水熱反應過程中就轉化成氧化物(SiO2);若是水熱反應後才加入之BS-X試樣,則於燒結加熱過程中才會轉化成氧化物(SiO2),且有燒失(Burn Out)現象發生。於氮氣中經1100 oC燒結2 h所得的AS-X試樣燒結體,其晶粒大小及緻密性並不會受到SiO2的添加而有明顯的變化,而BS-X試樣燒結體,則會因SiO2之添加而造成孔洞增加,體密度減小,且有晶粒增大之現象。
    AS-X及BS-X試樣之燒結體的導磁率、品質因數、飽和磁化量及矯頑磁力會因為SiO2之添加或燒結溫度之增加而變大。此結果顯示SiO2對錳鋅鐵氧磁體之磁性質有相當大的影響,我們可以利用這項特性來調製所需的磁性之燒結體。

    The eddy current loss of the Mn-Zn ferrite increases dramatically as used at MHz frequency range, of which problem can be eased by high saturation magnetization and low hysteresis loss. In order to prepare the kind of the ferrite for the high frequency application, SiO2 was selected as an additive in this study. The tetraethylorthosilicate (TEOS) was used as the precursor of SiO2, and was mixed into Mn-Zn ferrite nano-powders via the sol-gel coating route. The effect of SiO2 on sinterability, bulk density, shrinkage, microstructure and magnetic property of Mn-Zn ferrite were investigated. There are two ways to add TEOS in the Mn-Zn ferrite powders by introducing TEOS via hydrolysis to be adsorbed onto the surface of Mn-Zn ferrite powders at either before or after hydrothermal synthesis reaction. As TEOS was added into the AS-X specimens before the hydrothermal reaction, the silanoxide adsorbed on the surface of the powders would transfer into SiO2 during hydrothermal reaction. In contrast, as the TEOS added into the BS-X specimens after hydrothermal reaction, the TEOS transferred into SiO2 during the heat treatment. Change of the grain size and densification behavior of AS-X sample, sintered at 1100 oC for 2 h in N2 atmosphere, was not substantial. On the contrary, with the amount of SiO2 additive, the bulk density of the BS-X sintered bodies decreased due to the increase of porosity; furthermore, the grain size also increased.
    It was found that the permeability, Q factor, saturation magnetization, and coercivity of the AS-X and BS-X sintered bodies increased with the increasing of SiO2 contents. The results showed that SiO2 had a great effect on the magnetic properties of Mn-Zn ferrite. Thus the sintered ceramics with desired magnetic properties can be prepared by the method proposed in this study.

    目錄 中文摘要…………………………..…………………………..………I 英文摘要…………………………………….……………………….II 目錄……………………………………………..……………………IV 表目錄…………………………………………………………………X 圖目錄………………………………………………………………..XI 第一章 緒論…………………………………………….…….……..1 1-1 前言………………………………………………….………….1 1-2尖晶石型鐵氧磁體……………………………………..……….2 1-3研究目的………….……………………..….……………….…..3 第二章 理論基礎與前人研究……………………………………5 2-1 水熱合成法……………………………………………………..5 2-1-1水熱合成法之原理…………………………………...............5 2-1-2水熱法製備粉體之優點…………….……………….……...6 2-2 溶膠凝膠法…………………………………………………......6 2-2-1溶膠-凝膠法反應機構…………………….……………...6 2-2-2溶膠-凝膠法的原理……….…………………..…….……7 2-2-3 溶膠-凝膠法的優點…………….………….…….……….8 2-2-4溶膠-凝膠法未來之發展及應用……………………..…….9 2-3溶膠-凝膠製備SiO2…………………………………………..10 2-3-1四乙氧基矽(TEOS)水解-縮合的反應機構………………10 2-3-1-1水解反應機構………………………………………...11 2-3-1-2水解反應的速率………………………………………12 2-3-1-3縮合反應機構…………………………………………13 2-3-1-4縮合反應速率…………………………………………13 2-3-2影響SiO2粒徑大小之參數………………………………..14 2-4 結晶理論與機制…………………………………………….…16 2-4-1成核理論…………………………………………………...16 2-4-2 成核熱力學………………………………………..……..17 2-4-3 晶體成長……………………………………………..…..18 2-4-4溶質濃度與晶體成核、成長之關係……………….……...19 2-5 磁性理論基礎………………………………………………….20 2-5-1磁性的分類………………………………………………...20 2-5-2磁滯曲線的產生………………………………………...…21 2-5-3初導磁係數…..…………………………………….……...22 2-5-4損失與共振………………………………………………...23 2-5-5矯頑磁力…………………………………………………...24 2-5-6磁性異向性………………………………………………...24 2-5-7形狀異向性………………………………………………...24 2-5-8微粒子的矯頑磁力………………………………………..25 2-6 燒結理論………………………………………………………25 第三章 實驗方法與步驟…………………………………………39 3-1 實驗用原料及其物性和化性…………………………………39 3-1-1起始原料…………………………………………………..39 3-1-2添加劑之特性……………………………………………..39 3-1-3 熱重分析(TGA)…………………………………………..39 3-2 實驗流程……….……………………………………….……..40 3-2-1 A系列之實驗步驟………………………………….…..40 3-2-1-1 起始粉末………………………………….………….41 3-2-1-2 混合…………………………………………….……41 3-2-1-3 水熱處理……………………………………….……41 3-2-1-4 離心、乾燥……………………………..……….……41 3-2-1-5 成形………………………………………….….……42 3-2-1-6 燒結…………………………………………….……42 3-2-2 B系列之實驗步驟………………………………………..43 3-2-2-1 起始粉末………………………………………….…45 3-2-2-2 水熱處理………………………………………….…45 3-2-2-3 混合……………………………………………….…45 3-2-2-4 乾燥、過篩……………………………………..….…45 3-2-2-5 成形………………………………..…………………45 3-2-2-6 燒結……………………………………………….…46 3-3試樣符號…………………………………………….………....46 3-4 性質分析及實驗設備………………………………….……...47 3-4-1 感應耦合電漿原子放射光譜分析………………….……47 3-4-2 X射繞射儀……………………………………………..…47 3-4-3 熱機械分析儀(TMA)………………………………….…47 3-4-4 燒結體密度之測定………………………………………48 3-4-5 穿透式電子顯微鏡………………………………….……48 3-4-6 掃瞄式電子顯微鏡………………………………………48 3-4-7 熱重/熱差分析(TGA / DTA)..…………………………....49 3-4-8 差示掃描量熱器(DSC)……………………………..49 3-4-9 傅利葉轉換紅外線吸收光譜儀(FT-IR)…………………49 3-4-10 磁性質分析……………………………………………..49 3-4-10-1 導磁率、品質因數….……………………………....49 3-4-10-2 磁滯曲線………………………….………………..50 第四章 結果與討論…………………………………..…………...60 A系列……………………………………………………..………60 I. 粉末特性………………………………………………………..60 4-1 合成粉末……………………………………………………....60 4-1-1相分析……………………………………………………..60 4-1-2粒子形態分析……………………………..………………60 II. 燒結特性………………………………………..…………60 4-2燒結收縮曲線………………………………………….………60 4-3燒結體性質分析………………………………………….……61 4-3-1密度……………………………………………………….....61 4-3-2結晶相……………………………….………………….…61 4-3-3微結構…………………………………….….……………62 4-3-4磁性質………………………………………….………….62 4-3-4-1初導磁率……………………………………..……….62 4-3-4-2 品質因數(Q Factor)…………………………….……62 4-3-4-3磁滯曲線……………………………………….….….63 a. 飽和磁化量…………………………………………..…63 b. 矯頑磁力(保磁力)………………………………………63 B系列……………………………………………..………………….77 I. 粉末特性………………………………………………………….77 4-4 合成粉末……………………………………………....77 4-4-1相分析……………………………………………………….77 4-4-2粒子形態分析……………………………………………...77 4-4-3 粉末表面特性…………………………..………………..78 4-4-4 熱差/熱重分析……………………………..…………….78 II. 燒結特性…………………………………………….………….79 4-5 燒結收縮曲線………………………………………………….79 4-6 燒結體性質分析………………………………………………80 4-6-1 密度……………………………………………………….80 4-6-2 結晶相分析……………………………………………….81 4-6-3 微結構……………………………………………………..81 4-6-4 磁性質…………………………………………..………..83 4-6-4-1初導磁率………………………………………………83 4-6-4-2品質因數………………………………………………84 4-6-4-3磁滯曲線………………………………………………84 a. 飽和磁化量…………………………………..…………84 b. 矯頑磁力(保磁力)……………………………………….85 4-7 綜合比較………………………………………………….….123 第五章 結論…………………………………………………….....129 參考文獻…………………………………………….……………..130 表目錄 Table 2-1 Alternate paths for atom transport during the initial stages of sintering………………………..…………………………38 Table 3-1 Specific analysis of Iron nitrate nonahydrate………….…...52 Table 3-2 Specific analysis of Manganese nitrate tetrahydrate………....52 Table 3-3 Specific analysis of Zinc nitrate hexahydrate………………53 Table 3-4 Specific analysis of Ammonium Hydroxide……………….53 Table 3-5 Specific analysis of Nitrogen………………….……….…..54 Table 4-1 Relative density and shrinkage of AS-X specimens sintered at 1100 ℃ for 2 h in N2 atmosphere …...…..….…………....65 Table 4-2 Relative density and shrinkage of BS-X specimens sintered at 1100 ℃ for 2 h in N2 atmosphere……………………….86 Table 4-3 EDS analyses of (a) point 1 (b) point 2 in Fig.4-14.................87 Table 4-4 EDS analyses of (a) point 1 (b) point 2 (c) point 3 (d) point 4 (e) point 5 in Fig.4-37 (b)…..……..……………….…....88 圖目錄 Fig.1-1 (a) Spinel structure, and (b) sub-lattice structure………………4 Fig.2-1 Hydrothermal dissolution / precipitation reaction…………....27 Fig.2-2 Sol gel processing……………………..……………….……..28 Fig.2-3 Synthesis of SiO2 particle size at different pH………….....…..29 Fig.2-4 Relationship between the radius of nuclei and the free energy of system ……………………………………………..……..….30 Fig.2-5 Relationship between the super-saturated degree of solute in solution at a fixed temperature and the rate of homogeneous nucleation…………..…………………………………….…..... 31 Fig.2-6 Illustration of (a) movement of solvated solute molecules and (b) corresponding energy changes of each transformation based on the crystal growth….…………….…...………………32 Fig.2-7 Concentration of ions at the outskirt of solidus surface based on a reaction-controlled process…………………………….….33 Fig.2-8 Solute concentration, reaction time and each step of crystalline growth for the dissolution / precipitation mechanism……………………………………………….......…34 Fig.2-9 Self-spinning on the domain wall during magnetization....…..35 Fig.2-10 A model showing the change distribution of Weiss domain (a) Demagnetized state, (b)、(c)Reversible and irreversible (b) movement of domain wall and (d)Spinning (c) magnetization movement…………….…………..………...36 Fig.2-11 The B versus H behavior for a ferromagnetic or ferrimagnetic materials Fig. 2-12 Six different diffusion controlled paths………………………….………….37 Fig.2-12 Six different diffusion controlled paths…………….……….38 Fig.3-1 TGA of TEOS in N2 atmosphere……….……….……55 Fig.3-2 The (a) reactor and (b) controller of hydrothermal equipment………………………………………………...…...56 Fig.3-3 The appearance of green bodies (a) pellet disk (b) toroid ……………………………..……………………......…57 Fig.3-4 The module of SQUID (Quantum Design Co. Ltd.)………..58 Fig.3-5 The superconducting ring of SQUID…………..……………..59 Fig.4-1 XRD patterns of AS-X powders………………………………66 Fig.4-2 TEM images and diffraction patterns of AS-X powders (a) AS-0 (b) AS-100 (c) AS-200 (d) AS-400………………….…67 Fig.4-3 Dilatometric curves of AS-X specimens heated to 1100 ℃ and hold for 2 h in N2 atmosphere……………….…….……..68 Fig.4-4 XRD patterns of AS-X specimens sintered at 1100 ℃ for 2 h in N2 atmosphere………………..…………………….69 Fig.4-5 SEM of fractured surfaces of (a) AS-0 (b) AS-100 (c) AS-200 (d) AS-400 specimens sintered at 1100 ℃ for 2 h in N2 atmosphere …………………………..……..….……...70 Fig.4-6 SEM of polished surfaces of (a) AS-0 (b) AS-100 (c) AS-200 (d) AS-400 specimens sintered at 1100 ℃ for 2 h in N2 atmosphere ……………………………………..……...71 Fig. 4-7 Initial permeability of AS-X specimens as a function of temperature…………………………...…………….…………72 Fig. 4-8 Q factor of AS-X specimens as a function of temperature……………………………………………………73 Fig.4-9 Hysteresis of AS-X specimens sintered at 1100 ℃ for 2 h in N2 atmosphere ……………………………………………..74 Fig.4-10 Saturation magnetization of AS-X specimens sintered at 1100 ℃for 2 h in N2 atmosphere …………………………...75 Fig.4-11 Coercive force of AS-X specimens sintered at 1100 ℃ for 2 h in N2 atmosphere …………………………………………76 Fig.4-12 XRD patterns of BS-X powders….…………………..……..89 Fig.4-13 TEM images and diffraction patterns of BS-X powders (a) BS-0 (b) BS-100 (c) BS-200 (d) BS-400…..………….…..90 Fig.4-14 TEM image and diffraction patterns of BS-10 wt% powder (a) image (b)(c) diffraction patterns………...……..…….….91 Fig. 4-15 FT-IR spectrum of (a)BS-0 (b)BS-100 (c)BS-200 (d) BS-400 (e) TEOS………………….……………….…….…...92 Fig. 4-16 FT-IR spectrum of (a) BS-0 (c) BS-400 powders and (b)BS-0 (d) BS-400 powders, calcined at 1100 ℃ for 2 h in N2 atmosphere……………………….…………..….….......93 Fig.4-17 TGA and DTA of BS-X powders in N2 atmosphere…….…….94 Fig.4-18 Dilatometric curves of BS-X specimens heated to 1100 ℃ and hold for 2 h in N2 atmosphere……………....…95 Fig.4-19 Dilatometric curves of BS-100 specimens heated to 700 ℃ 、900 ℃ and 1100 ℃/2 h in N2 atmosphere…………………96 Fig.4-20 Dilatometric curves of BS-200 specimens heated to 700 ℃ 、900 ℃ and 1100 ℃/2 h in N2 atmosphere …………..…….97 Fig.4-21 Dilatometric curves of BS-400 specimens heated to 700 ℃ 、900 ℃ and 1100 ℃/2 h in N2 atmosphere ……………..……98 Fig.4-22 XRD patterns of BS-X specimens sintered at 1100 ℃ for 2 h in N2 atmosphere………………..……………………99 Fig.4-23 XRD patterns of BS-100 specimens sintered at 700℃ 、900℃ and 1100℃/2 h in N2 atmosphere.……..……….….100 Fig.4-24 XRD patterns of BS-200 specimens sintered at 700℃ 、900℃ and 1100℃/2 h in N2 atmosphere …………………101 Fig.4-25 XRD patterns of BS-400 specimens sintered at 700℃ 、900℃ and 1100℃/2 h in N2 atmosphere …………………102 Fig.4-26 SEM of fractured surfaces of (a)BS-0 (b)BS-100 (d) BS-200(d)BS-400 specimens sintered at 1100℃ for (e) 2 h in N2 atmosphere…………………………..……….103 Fig.4-27 SEM of fractured surfaces of (a)BS-0 (b)BS-100 (c)BS-200(d)BS-400 specimens sintered at 1100℃ for 2 h in N2 atmosphere……….………….………………...…..104 Fig.4-28 SEM of polished surfaces of (a)BS-0 (b)BS-100 (c) BS-200 (d)(e)BS-400 specimens sintered at 1100 ℃ for 2 h in N2 atmosphere ……………………………….….105 Fig.4-29 SEM of fractured surfaces of BS-100 specimens sintered at (a) 700 ℃ (b) 900 ℃ (c) 1100 ℃/2 h in N2 atmosphere …………………….…..………………………..106 Fig.4-30 SEM of polished surfaces of BS-100 specimens sintered at (a) 700 ℃ (b) 900 ℃ (c) 1100 ℃/2 h in N2 atmosphere ………………………………….…………...….107 Fig.4-31 SEM of fractured surfaces of BS-200 specimens sintered at (a) 700 ℃ (b) 900 ℃ (c) 1100 ℃/2 h in N2 atmosphere…………………………..………………………108 Fig.4-32 SEM of polished surfaces of BS-200 specimens sintered at (a) 700 ℃ (b) 900 ℃ (c) 1100 ℃/2 h in N2 atmosphere…………………………………..………………109 Fig.4-33 SEM of fractured surfaces of BS-400 specimens sintered at (a) 700 ℃ (b) 900 ℃ (c) 1100 ℃/2 h in N2 atmosphere…………………………………………..………110 Fig.4-34 SEM of polished surfaces of BS-400 specimens sintered at (a) 700 ℃ (b) 900 ℃ (c) 1100 ℃/2 h in N2 atmosphere……………….……………………….………….111 Fig.4-35 SEM of polished surface of BS-400 sintered body (a)(a’) EDS mapping for Si element (b)EDS line scanning for Si element………………………….…....112 Fig.4-36 TEM image and diffraction patterns of BS-0 sintered body (a) image (b) diffraction pattern in [001] beam direction (c) diffraction pattern in [ 112 ] beam direction ..……………………………………………………113 Fig.4-37 TEM photograph of BS-400 sintered body (a)(b) images (c) diffraction pattern in [ 112 ] beam direction ….....114 Fig.4-38 Initial permeability of BS-X specimen as a function of temperature………………………………….……….…115 Fig.4-39 Q factor of BS-X specimen as a function of temperature………….……………………………….…..116 Fig.4-40 Hysteresis curve of BS-X specimens sintered at 1100 ℃ for 2 h in N2 atmosphere…………………………..………117 Fig.4-41 Hysteresis curve of BS-400 sintered at 700 ℃ 、900 ℃ and 1100 ℃/2 h in N2 atmosphere……..………..118 Fig.4-42 Saturation magnetization of BS-X specimens sintered at 1100 ℃for 2 h in N2 atmosphere…….…………………..119 Fig.4-43 Saturation magnetization of BS-400 specimens sintered at 700 ℃、900 ℃ and 1100 ℃/2 h in N2 atmosphere…….120 Fig.4-44 Coercive force of BS-X specimens sintered at 1100 ℃ for 2 h in N2 atmosphere……….………….……..………..121 Fig.4-45 Coercive force of BS-400 specimens sintered at 700 ℃ 、900 ℃ and 1100 ℃/2 h in N2 atmosphere………………122 Fig.4-46 Initial permeability of AS-X and BS-X specimens as a function of temperature………………………………….125 Fig.4-47 Q factor of AS-X and BS-X specimens as a function of temperature ……………………………………………..126 Fig.4-48 Saturation magnetization of AS-X and BS-X specimens sintered at 1100 ℃ for 2 h in N2 atmosphere…………...….127 Fig.4-49 Coercive force of AS-X and BS-X specimens sintered at 1100 ℃ for 2 h in N2 atmosphere………………………..128

    參考文獻

    1. P. I. Slick, “Ferrites for non-microwave applications,” Ferromagnetic Materials, 2, ed. by E. P. Wohlfarth (North-Holland Press, New York), 189-241 (1980).
    2. K. Takadate, Y. Yamamoto, A. Makino, “Fine grained Mn-Zn ferrite for high frequency driving,” J. Appl. Phys., 83, 6861-6863 (1998).
    3. A. T. Taylor, S. T. Reczek, J. A. Rosen, “Soft Ferrite Processing,” J. Am. Ceram. Soc. Bull., 74[4], 91-94 (1995).
    4. 鄭振東,實用磁性材料,全華科技圖書股份有限公司出版 (1999).
    5. T. Tsutaoka, T. Kasagi, K. Hatakeyama, “Magnetic-Field Effect on the Complex Permeability for Mn-Zn Ferrites and its Composite- Materials,” J. Euro. Ceram. Soc., 5[6-7], 1531-1535 (1999).
    6. T. Tsutaoka, T. Nakamura, K. Hatakeyama, “Magnetic-Field Effect on the Complex Permeability Spectra in Ni-Zn Ferrites,” J. Appl. Phys., 82[6], 3068-3071 (1997).
    7. D. M. Zhang, C. F. Foo, “Theoretical-Analysis of the Electrical and Magnetic-Field Distrobutions in a Toroidal Core with Circular Cross-Section,” IEEE Trans. Magn., 35[3], 1924-1931 (1999).
    8. Y. H. Han, J. J. Suh, M. S. Shin, S. K. Han, “The Effect of Sintering Conditions on the Power Loss Characteristics of Mn-Zn Ferrites for High-Frequency Applications,” J. DE Phys., 7[C1], 111-112 (1997).
    9. Yong S. Cho, Deborah Schaffer, Vernon L. Burdick, and Vasantha R. W. Amarakoon, “Homogeneous Grain Growth and Fast-Firing of Chemically Modified Nanocrystalline Mn-Zn Ferrites,” Mater. Res. Bull., 34[14/15], 2361-2368 (1999).
    10. Wen-Hao Lin, Shiuh-Ke Jang and Chii-Shyang Hwang, “Powders Characteristics and Sinterability of Hydrothermally Synthesized Mn-Zn Ferrites,” J. Ceram. Soc. Japan 108[1], 10-16 (2000).
    11. Wen-Hao Lin, Shiuh-Ke Jang and Chii-Shyang Hwang, “Characteristics of Mn-Zn Ferrite Powders by Hydrothermal Mehtod,” J. Mater. Res., 14[1], 204-208 (1999).
    12. Sridhar Komarneni, Elizabeth Fregeau, Else Breval, and Rustum Roy, “Hydrothermal Preparation of Ultrafine Ferrites and Their Sintering,” J. Am. Ceram. Soc., 71[1], c-26-c-28 (1988).
    13. D. Autissier, L. Autissier, “Study of phase formation and sintering of spinel ferrite MnxZn1-xFe2O4,” Proceedings of The Sixth International Conference on Ferrites, Tokyo and Kyoto, Japan (1992).
    14. 汪建民等, 陶瓷技術手冊, 經濟部技術部、中華民國粉末冶金學會、中華民國產業發展協進會出版 (1994年7月).
    15. A. R. Von Hipsel, Dielectrics and Waves, John Wiley & Sons, New York, (1954).
    16. William J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders,” Ceram. Bull., 67[10], 1673-1678 (1988).
    17. S. Wada, T. Suzuki and T. Noma, “Influence of Gravity on Inorganic Crystalline Particle Growth under High Temperature-High Pressure Aqueous Solution,” J. Ceram. Soc. Jpn., 103[12], 1220 (1995).
    18. A. Chittofratt and E. Matijevic, “Uniform particles of zinc-oxide of different morphologies,” Colloids and Surface., 48[1], 65-78 (1990).
    19. T. Trindate, J. D. Pedrosa de Jesus and P. O’Brien, “Preparation of zinc-oxide and znic-sulfide powders by controlled precipitation from aqueous-soultion,” J. Mater. Chem., 4[10], 1611-1614 (1994).
    20. M. Hinaro and E. Kato, “Hydrothermal synthesis and sintering of fine powders in CeO2-ZrO2 system,” J. Am. Ceram. Soc., 79[3], 777-780 (1996).
    21. E. Tani, M. Yoshimura and S. Somiya, Chapman and Hall Ltd., p461, (1982).
    22. Y. C. Chou and M. N. Rahaman, “Hydrothermal synthesis and sintering of ultrafine CeO2 powders,” J. Mater. Res., 8[7], 1680-1684 (1993).
    23. B. Jirgensons, M. E. Straumanis, Colloid Chemistry, McMillan Co. New York, (1962).
    24. 陳慧英, 溶膠凝膠法在薄膜製程上之應用, 化工技術,第80期,11 月(1999).
    25. J. Livage and M. Henry, “Ultrastructure Processing of Advanced Ceramics,” (J. D. Mackenzie and D. R. Ulrich, eds), Wiley, New York, p183 (1988).
    26. C. J. Brinker, G. W. Scherer, “Sol-Gel-Glass:I. Gelation and gel structure,” J. Non-Cryst. Solids 70, 301-322 (1985).
    27. D. C. Bradley, R. C. Mehrotra, D. P. Gaur, “Metal alkoxide,” Academic Press, London (1978).
    28. J. Zarzycki, J. Phalipon, “Synthesis of glasses from gels:the problem of monolithic gels,” J. Mater. Sci., 17, 3371-3379 (1982).
    29. C. J. Brinker, G. W. Scherer, “Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing,” Academic Press, New York (1990).
    30. S. E. Friberg, S. M. Jones, and J. Sjoblom, “Solid-State Dye Laser Materials from the Microemulsion-Gel Method,”J. Mat. Synthesis and Processing., 2[1], 29-44 (1994).
    31. J. C. G. Pereira, C.R.A. Catlow and G.D. Price, “Silica condensation reaction,” Chem. Commun., 1387-1388 (1998).
    32. C. J. Brinker, “Hydrolysis and condensation of silicates:effect on structure,” J. Non-cryst. Solids, 100, 31-50 (1988).
    33. K. D. Keefer, “The Effect of Hydrolysis Condition on the Structure and Growth of Silicate Polymers,” MRS 1984 Spring Meeting, Feb. 27-29 Albuguerque, New Mexico.
    34. R. K. Iler, “The Chemistry of Silica,” Woley-Interscience (1979).
    35. Z. Z. Vysotskii et al., p.72 in “Adsorption and Adsorbents” No. 1. John Wiley & Sons (1973).
    36. C. J. Brinker et al., “A Comparsion Between the Densilication Kinetics of Colloidal and Polymeric Silica Gels”, MRS 1984 Spring Meeting, Feb. 27-29 Albuguerque, New Mexico.
    37. Chia-Lu Chang and H. Scott Fogler, “Kinetics of Silica Particle Formation in Nonionic W/O Microemulsions from TEOS,” AIChE J., 42[11], 3153 (1996).
    38. R. Aelion, A. Loebel and F. Eirich, “Hydrolysis of Ethyl Silicate” J. Am. Chem. Soc. 72, 5705 (1950).
    39. C. Okkerse, “Porous Silica,” Chapter 5, in “Physical Chem. Aspects of Adsorbents and Catalysis”
    40. K. Osseo-Asare and F. J. Arriagada, “Synthesis of Nanosize Silica in Aerosol OT Reverse Microemulsion,” J. Collid Interface Sci. 170, 8-17 (1995).
    41. R. K. Iler, Colloidal Silica, p1-100 in Surface and Colloid Science, V6, ed. Matijenic E., John Wiley and Sons (1973).
    42. M. W. Colby, A. Osaka and J. D. Mackenzie “Effect of Temperature on Formation of Silica Gel,” J. Non-cryst. Solids, 82, 37-41 (1986).
    43. 東保男. 田岛義己. 大岛信男. 末廣建介 “球壯粒子合成熱的舉動”窯業協會誌 94[6], 559-563 (1986).
    44. A. G. Walton, “The formation and Properties of Precipitates,” John Wiley & Sons, Inc., (1967).
    45. G. L. Messing, J. L. Mcardle and R. A. Shelleman, “The Need for Controlled Heterogeneous Nucleation in Ceramic Processing,” Mat. Res. Symp. Proc., 73, 471 (1980).
    46. D. Elwell and H. J. Schell, “Crystal Growth from High-Temperature Solutiona,” Academic Press, Inc., 150, (1975).
    47. T. Sugimoto, “Preparation of Monodispered Colloidal Particles,” Advances in Colloid and Interface Sci., 65, 28 (1987).
    48. O. Sohnel and J. Garside, “Precipitaition,” Botterworth-Heinemann, Oxford, UK (1992).
    49. Marko Rozman and Miha Drofenik, “Sintering of nanosized Mn-Zn ferrite powders,” J. Am. Ceram. Soc., 81[7], 1757-64 (1998).
    50. W. D. Kingery and M.Berg, “Study of Initial Stage of Sintering Solids by Viscous Flow, Evaporation-Condensation and Self-Diffusion,” J. Appl. Phys., 26, 1205-1212 (1955).
    51. M. F. Ashby, “A First report on Sintering Diagrams,” Acta. Metall., 22, 275-289 (1974).
    52. R. L. Coble, “Sintering Crystalline Solids : II , Experimental Test of Diffusion Models in powder Compacts,” J. Appl. Phys., 32, 793-799 (1961).
    53. R. L. Coble, “Sintering Crystalline Solids : I , Intermediate and Final Stage of Diffusion Models,” J. Appl. Phys., 32, 787-792 (1961).
    54. K. Ishino, S. Sator, Y. Takahashi, K. Iwasaki and N. Obata, Proceedings of ICF6., Tokyo, Japan, 1173-1176 (1992).
    55. Marko Rozman and Miha Drofenik, “Sintering of nanosized MnZn ferrite powders,” J. Am. Ceram. Soc., 81[7], 1757-64, (1998).
    56. E. C. Snelling, “Ferrites for linear applications,” IEEE spectrum, 9[1], 42-51 (1972).
    57. 許麗文, “SiO2單分散粉體之合成及其性質之研究,” 國立成功大學化學研究所碩士論文 (1999).

    下載圖示 校內:2003-07-29公開
    校外:2003-07-29公開
    QR CODE