| 研究生: |
黃聖哲 Huang, Sheng-Che |
|---|---|
| 論文名稱: |
SiO2對奈米級錳鋅鐵氧磁體粉末
燒結及燒結體性質之影響 Effect of SiO2 on Sintering of Mn-Zn Ferrite Nano-Powder and Characteristics of Sintered Bodies |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 鐵氧磁體 、SiO2 、燒結 、溶膠-凝膠法 |
| 外文關鍵詞: | SiO2, Ferrite, Sintering, Sol-Gel method |
| 相關次數: | 點閱:228 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵氧磁體使用於數MHz的高頻範圍時,其渦流損失會急劇增大。為克服此現象,可採用具有飽和磁通密度較高及低鐵損值特點之錳鋅鐵氧磁體。為製備此種鐵氧磁體,本研究選用SiO2為添加劑以溶膠-凝膠吸附法將SiO2加入奈米級錳鋅鐵氧磁體粉末中,並探討SiO2對粉體燒結性(相對燒結密度、收縮率),燒結體之微結構及磁性質之影響。實驗是以矽烷氧化物(TEOS)為SiO2的起始原料,加入錳鋅鐵氧磁體粉末中之方法分為二:即分別於水熱反應前或反應後加入,使TEOS經水解吸附在粉末表面。於水熱反應前加入之AS-X試樣中,這些吸附在粉體表面的矽烷氧化物,會在水熱反應過程中就轉化成氧化物(SiO2);若是水熱反應後才加入之BS-X試樣,則於燒結加熱過程中才會轉化成氧化物(SiO2),且有燒失(Burn Out)現象發生。於氮氣中經1100 oC燒結2 h所得的AS-X試樣燒結體,其晶粒大小及緻密性並不會受到SiO2的添加而有明顯的變化,而BS-X試樣燒結體,則會因SiO2之添加而造成孔洞增加,體密度減小,且有晶粒增大之現象。
AS-X及BS-X試樣之燒結體的導磁率、品質因數、飽和磁化量及矯頑磁力會因為SiO2之添加或燒結溫度之增加而變大。此結果顯示SiO2對錳鋅鐵氧磁體之磁性質有相當大的影響,我們可以利用這項特性來調製所需的磁性之燒結體。
The eddy current loss of the Mn-Zn ferrite increases dramatically as used at MHz frequency range, of which problem can be eased by high saturation magnetization and low hysteresis loss. In order to prepare the kind of the ferrite for the high frequency application, SiO2 was selected as an additive in this study. The tetraethylorthosilicate (TEOS) was used as the precursor of SiO2, and was mixed into Mn-Zn ferrite nano-powders via the sol-gel coating route. The effect of SiO2 on sinterability, bulk density, shrinkage, microstructure and magnetic property of Mn-Zn ferrite were investigated. There are two ways to add TEOS in the Mn-Zn ferrite powders by introducing TEOS via hydrolysis to be adsorbed onto the surface of Mn-Zn ferrite powders at either before or after hydrothermal synthesis reaction. As TEOS was added into the AS-X specimens before the hydrothermal reaction, the silanoxide adsorbed on the surface of the powders would transfer into SiO2 during hydrothermal reaction. In contrast, as the TEOS added into the BS-X specimens after hydrothermal reaction, the TEOS transferred into SiO2 during the heat treatment. Change of the grain size and densification behavior of AS-X sample, sintered at 1100 oC for 2 h in N2 atmosphere, was not substantial. On the contrary, with the amount of SiO2 additive, the bulk density of the BS-X sintered bodies decreased due to the increase of porosity; furthermore, the grain size also increased.
It was found that the permeability, Q factor, saturation magnetization, and coercivity of the AS-X and BS-X sintered bodies increased with the increasing of SiO2 contents. The results showed that SiO2 had a great effect on the magnetic properties of Mn-Zn ferrite. Thus the sintered ceramics with desired magnetic properties can be prepared by the method proposed in this study.
參考文獻
1. P. I. Slick, “Ferrites for non-microwave applications,” Ferromagnetic Materials, 2, ed. by E. P. Wohlfarth (North-Holland Press, New York), 189-241 (1980).
2. K. Takadate, Y. Yamamoto, A. Makino, “Fine grained Mn-Zn ferrite for high frequency driving,” J. Appl. Phys., 83, 6861-6863 (1998).
3. A. T. Taylor, S. T. Reczek, J. A. Rosen, “Soft Ferrite Processing,” J. Am. Ceram. Soc. Bull., 74[4], 91-94 (1995).
4. 鄭振東,實用磁性材料,全華科技圖書股份有限公司出版 (1999).
5. T. Tsutaoka, T. Kasagi, K. Hatakeyama, “Magnetic-Field Effect on the Complex Permeability for Mn-Zn Ferrites and its Composite- Materials,” J. Euro. Ceram. Soc., 5[6-7], 1531-1535 (1999).
6. T. Tsutaoka, T. Nakamura, K. Hatakeyama, “Magnetic-Field Effect on the Complex Permeability Spectra in Ni-Zn Ferrites,” J. Appl. Phys., 82[6], 3068-3071 (1997).
7. D. M. Zhang, C. F. Foo, “Theoretical-Analysis of the Electrical and Magnetic-Field Distrobutions in a Toroidal Core with Circular Cross-Section,” IEEE Trans. Magn., 35[3], 1924-1931 (1999).
8. Y. H. Han, J. J. Suh, M. S. Shin, S. K. Han, “The Effect of Sintering Conditions on the Power Loss Characteristics of Mn-Zn Ferrites for High-Frequency Applications,” J. DE Phys., 7[C1], 111-112 (1997).
9. Yong S. Cho, Deborah Schaffer, Vernon L. Burdick, and Vasantha R. W. Amarakoon, “Homogeneous Grain Growth and Fast-Firing of Chemically Modified Nanocrystalline Mn-Zn Ferrites,” Mater. Res. Bull., 34[14/15], 2361-2368 (1999).
10. Wen-Hao Lin, Shiuh-Ke Jang and Chii-Shyang Hwang, “Powders Characteristics and Sinterability of Hydrothermally Synthesized Mn-Zn Ferrites,” J. Ceram. Soc. Japan 108[1], 10-16 (2000).
11. Wen-Hao Lin, Shiuh-Ke Jang and Chii-Shyang Hwang, “Characteristics of Mn-Zn Ferrite Powders by Hydrothermal Mehtod,” J. Mater. Res., 14[1], 204-208 (1999).
12. Sridhar Komarneni, Elizabeth Fregeau, Else Breval, and Rustum Roy, “Hydrothermal Preparation of Ultrafine Ferrites and Their Sintering,” J. Am. Ceram. Soc., 71[1], c-26-c-28 (1988).
13. D. Autissier, L. Autissier, “Study of phase formation and sintering of spinel ferrite MnxZn1-xFe2O4,” Proceedings of The Sixth International Conference on Ferrites, Tokyo and Kyoto, Japan (1992).
14. 汪建民等, 陶瓷技術手冊, 經濟部技術部、中華民國粉末冶金學會、中華民國產業發展協進會出版 (1994年7月).
15. A. R. Von Hipsel, Dielectrics and Waves, John Wiley & Sons, New York, (1954).
16. William J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders,” Ceram. Bull., 67[10], 1673-1678 (1988).
17. S. Wada, T. Suzuki and T. Noma, “Influence of Gravity on Inorganic Crystalline Particle Growth under High Temperature-High Pressure Aqueous Solution,” J. Ceram. Soc. Jpn., 103[12], 1220 (1995).
18. A. Chittofratt and E. Matijevic, “Uniform particles of zinc-oxide of different morphologies,” Colloids and Surface., 48[1], 65-78 (1990).
19. T. Trindate, J. D. Pedrosa de Jesus and P. O’Brien, “Preparation of zinc-oxide and znic-sulfide powders by controlled precipitation from aqueous-soultion,” J. Mater. Chem., 4[10], 1611-1614 (1994).
20. M. Hinaro and E. Kato, “Hydrothermal synthesis and sintering of fine powders in CeO2-ZrO2 system,” J. Am. Ceram. Soc., 79[3], 777-780 (1996).
21. E. Tani, M. Yoshimura and S. Somiya, Chapman and Hall Ltd., p461, (1982).
22. Y. C. Chou and M. N. Rahaman, “Hydrothermal synthesis and sintering of ultrafine CeO2 powders,” J. Mater. Res., 8[7], 1680-1684 (1993).
23. B. Jirgensons, M. E. Straumanis, Colloid Chemistry, McMillan Co. New York, (1962).
24. 陳慧英, 溶膠凝膠法在薄膜製程上之應用, 化工技術,第80期,11 月(1999).
25. J. Livage and M. Henry, “Ultrastructure Processing of Advanced Ceramics,” (J. D. Mackenzie and D. R. Ulrich, eds), Wiley, New York, p183 (1988).
26. C. J. Brinker, G. W. Scherer, “Sol-Gel-Glass:I. Gelation and gel structure,” J. Non-Cryst. Solids 70, 301-322 (1985).
27. D. C. Bradley, R. C. Mehrotra, D. P. Gaur, “Metal alkoxide,” Academic Press, London (1978).
28. J. Zarzycki, J. Phalipon, “Synthesis of glasses from gels:the problem of monolithic gels,” J. Mater. Sci., 17, 3371-3379 (1982).
29. C. J. Brinker, G. W. Scherer, “Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing,” Academic Press, New York (1990).
30. S. E. Friberg, S. M. Jones, and J. Sjoblom, “Solid-State Dye Laser Materials from the Microemulsion-Gel Method,”J. Mat. Synthesis and Processing., 2[1], 29-44 (1994).
31. J. C. G. Pereira, C.R.A. Catlow and G.D. Price, “Silica condensation reaction,” Chem. Commun., 1387-1388 (1998).
32. C. J. Brinker, “Hydrolysis and condensation of silicates:effect on structure,” J. Non-cryst. Solids, 100, 31-50 (1988).
33. K. D. Keefer, “The Effect of Hydrolysis Condition on the Structure and Growth of Silicate Polymers,” MRS 1984 Spring Meeting, Feb. 27-29 Albuguerque, New Mexico.
34. R. K. Iler, “The Chemistry of Silica,” Woley-Interscience (1979).
35. Z. Z. Vysotskii et al., p.72 in “Adsorption and Adsorbents” No. 1. John Wiley & Sons (1973).
36. C. J. Brinker et al., “A Comparsion Between the Densilication Kinetics of Colloidal and Polymeric Silica Gels”, MRS 1984 Spring Meeting, Feb. 27-29 Albuguerque, New Mexico.
37. Chia-Lu Chang and H. Scott Fogler, “Kinetics of Silica Particle Formation in Nonionic W/O Microemulsions from TEOS,” AIChE J., 42[11], 3153 (1996).
38. R. Aelion, A. Loebel and F. Eirich, “Hydrolysis of Ethyl Silicate” J. Am. Chem. Soc. 72, 5705 (1950).
39. C. Okkerse, “Porous Silica,” Chapter 5, in “Physical Chem. Aspects of Adsorbents and Catalysis”
40. K. Osseo-Asare and F. J. Arriagada, “Synthesis of Nanosize Silica in Aerosol OT Reverse Microemulsion,” J. Collid Interface Sci. 170, 8-17 (1995).
41. R. K. Iler, Colloidal Silica, p1-100 in Surface and Colloid Science, V6, ed. Matijenic E., John Wiley and Sons (1973).
42. M. W. Colby, A. Osaka and J. D. Mackenzie “Effect of Temperature on Formation of Silica Gel,” J. Non-cryst. Solids, 82, 37-41 (1986).
43. 東保男. 田岛義己. 大岛信男. 末廣建介 “球壯粒子合成熱的舉動”窯業協會誌 94[6], 559-563 (1986).
44. A. G. Walton, “The formation and Properties of Precipitates,” John Wiley & Sons, Inc., (1967).
45. G. L. Messing, J. L. Mcardle and R. A. Shelleman, “The Need for Controlled Heterogeneous Nucleation in Ceramic Processing,” Mat. Res. Symp. Proc., 73, 471 (1980).
46. D. Elwell and H. J. Schell, “Crystal Growth from High-Temperature Solutiona,” Academic Press, Inc., 150, (1975).
47. T. Sugimoto, “Preparation of Monodispered Colloidal Particles,” Advances in Colloid and Interface Sci., 65, 28 (1987).
48. O. Sohnel and J. Garside, “Precipitaition,” Botterworth-Heinemann, Oxford, UK (1992).
49. Marko Rozman and Miha Drofenik, “Sintering of nanosized Mn-Zn ferrite powders,” J. Am. Ceram. Soc., 81[7], 1757-64 (1998).
50. W. D. Kingery and M.Berg, “Study of Initial Stage of Sintering Solids by Viscous Flow, Evaporation-Condensation and Self-Diffusion,” J. Appl. Phys., 26, 1205-1212 (1955).
51. M. F. Ashby, “A First report on Sintering Diagrams,” Acta. Metall., 22, 275-289 (1974).
52. R. L. Coble, “Sintering Crystalline Solids : II , Experimental Test of Diffusion Models in powder Compacts,” J. Appl. Phys., 32, 793-799 (1961).
53. R. L. Coble, “Sintering Crystalline Solids : I , Intermediate and Final Stage of Diffusion Models,” J. Appl. Phys., 32, 787-792 (1961).
54. K. Ishino, S. Sator, Y. Takahashi, K. Iwasaki and N. Obata, Proceedings of ICF6., Tokyo, Japan, 1173-1176 (1992).
55. Marko Rozman and Miha Drofenik, “Sintering of nanosized MnZn ferrite powders,” J. Am. Ceram. Soc., 81[7], 1757-64, (1998).
56. E. C. Snelling, “Ferrites for linear applications,” IEEE spectrum, 9[1], 42-51 (1972).
57. 許麗文, “SiO2單分散粉體之合成及其性質之研究,” 國立成功大學化學研究所碩士論文 (1999).