簡易檢索 / 詳目顯示

研究生: 吳哲豪
Wu, Che-Hao
論文名稱: 改變化學組成與添加B-Bi-Zn-Si玻璃對Y相鐵氧磁體燒結行為與磁、介電性質之影響
Effects of chemical composition and B-Bi-Zn-Si glass addition on the sintering behavior , magnetic and dielectric properties for Y-type ferrites
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 101
中文關鍵詞: 多層晶片電感電感Y相鐵氧磁體低溫共燒陶瓷
外文關鍵詞: MLCI, inductor, Y-type ferrite, LTCC
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,無線網路與行動電話等通訊裝置發展快速,因此高頻通訊之需求與日俱增,多功能微型通訊零件將可符合未來市場之需求。而目前國內所使用之低溫共燒磁性陶瓷多為NiCuZn鐵氧磁體,但其應用頻段受到Snoek極限之限制,使其無法應用於大於300 MHz以上之通訊元件。因此如何開發可低溫燒結且具有高初始磁導係數、高截止頻率(>300 MHz)之磁性鐵氧磁體就變得相當重要。現則多為利用低溫共燒陶瓷技術(LTCC)。本文藉由添加將B2O3–Bi2O3–ZnO–SiO2玻璃於Y相鐵氧磁體2(Ba1-xBixO).2(ZnyCo0.8-yCu0.2O).6(Fe2-x/3Znx/3O3)中,探討主成分之調整(x、y之含量)及玻璃添加量對Y相鐵氧磁體燒結行為、微結構、磁以及介電性質之影響。研究結果指出,在未添加玻璃情況下,當添加微量Bi和Zn(x = 0.1、0.2,y =0.3、0.4),在燒結溫度≦10500C時,可得到純Y相之鐵氧磁體。當Bi和Zn之含量為0.1與0.3,玻璃添加量為4wt%時,可低於9000C燒結緻密化。當Y相鐵氧磁體中添加,BB35SZ玻璃助燒結劑時,可使Y相鐵氧磁體緻密化之燒結溫度從10500C降至9000C;當組成x為0.1,y為0.3而玻璃添加量為4wt%之坯體,經9000C燒結後,其燒結體之相對密度可大於90%且有最佳磁導係數≧3、磁性品質因子≧30之磁性質。

    It is a great challenge for chip-type magnetic components because it need to be co-fired with Ag electrode. Effects of B2O3–Bi2O3–ZnO–SiO2 (BB35SZ, where 35 = the mole fraction of Bi2、O3 in the glass) glass addition on the sintering behavior , magnetic and dielectric properties for Y-type ferrite 2(Ba1-xBixO).2(ZnyCo0.8-yCu0.2O).6(Fe2-x/3Znx/3O3) ceramics were investigated in developing low temperature co-fired ceramics (LTCC) for electronic components. The results indicate that the samples doped with minor Bi and Zn (x = 0.1、0.2 , y =0.3、0.4) and without glass addition , pure Y-type hexagonal ferrite can be obtained. The Bi samples (x =0.1 y =0.3) added with 4wt% BB35SZ can be densified under 9000C. As a result, BB35SZ glass can be used as a sintering aid to reduce the densification temperature of Y-type ferrites from 10500C to 9000C without secondary phase formation. Y-type ferrite ceramics added with 4wt% BB35SZ glass and sintered at 9000C showed a relative density higher than 90%, a high permeability higher than 3, a permittivity lower than 20. The Bi–Zn co-doped (x =0.1,y =0.3) sample added with 4wt% BB35SZ glass exhibited excellent magnetic and dielectric properties in hyper frequency, which can be a promising candidate material for multi-layer chip-inductive components.

    Abstract i 摘要 ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1-1 前言 1 1-2 研究方向與目的 2 第二章 前人研究及理論基礎 3 2-1 六方晶型鐵氧磁體(Hexagonal Ferrite)結晶構造與基礎物性 3 2-1-1 六方晶ferrite 3 2-1-2 六方晶ferrite的block構造 5 2-2 鐵氧磁體(Ferrite)其磁性質 7 2-2-1 初始磁導率 7 2-3 鐵氧磁體(Ferrite)其介電性質 9 2-3-1 介電之基本介紹 9 2-3-2極化機制 11 2-4 阻抗分析法 14 2-5 Y相鐵氧磁體與添加劑效果之相關研究 21 2-5-1 Y相鐵氧磁體 21 2-5-2 添加劑效果 22 2-6 液相燒結 23 第三章 實驗步驟與方法 26 3-1 起始原料 26 3-2 粉末及燒結體製備 26 3-2-1 Y相鐵氧磁體粉末與玻璃粉末製備 26 3-2-2 添加玻璃助燒結劑後的Y相鐵氧磁體粉末製備 27 3-2-3 Y相鐵氧磁體粉末及添加玻璃助燒結劑後的Y相鐵氧磁體粉末燒結 體試片製備 27 3-3 材料特性分析 30 3-3-1 燒結收縮曲線及密度 30 3-3-2 XRD相鑑定 30 3-3-3 SEM顯微結構觀察 31 3-3-4 潤濕角及介面反應之量測 31 3-4 材料性質量測 31 3-4-1 交流阻抗量測 31 3-4-2 複合材料其磁性與介電性質的量測 31 第四章 實驗結果與討論 33 4-1 Y相鐵氧磁體系統 33 4-1-1 煆燒粉末相鑑定 33 4-1-2 燒結體密度分析 33 4-1-3 燒結體之相鑑定 33 4-1-4 阻抗分析 42 4-1-5 BB35SZ玻璃熔融溫度分析 44 4-1-6 潤濕角分析 44 4-1-7 玻璃助燒結劑與Y相鐵氧磁體之介面觀察 53 4-1-8 微區顯微結構觀察 56 4-1-9 介電性質 62 4-1-10 磁性質 65 4-2 添加玻璃助燒結劑後的Y相鐵氧磁體系統 71 4-2-1 燒結體密度分析 71 4-2-2 燒結體燒結熱收縮曲線分析 71 4-2-3 燒結粉末相鑑定 75 4-2-4 微區顯微結構觀察 79 4-2-5 介電性質 80 4-2-6 磁性質 91 第五章 結論 98 參考文獻 99

    [1]山口 喬、聊田博明、岡本祥一、近桂一郎,磁性陶瓷,黃忠良 譯,復漢出版社,台南 (1985)
    [2] I. D. Fisica, “Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods,” J. Appl. Phys., C 1 , 85 (1977)
    [3] G.. Albanese, “Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods,” J. Appl. Phys., 7 , 277 (1975)
    [4] V. G.. Harris, A. Geiler, Y. Chen, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi , C. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and
    applications of microwave ferrites.” J. Eur. Ceram. Soc., 321 , 2035-2047 (2009)
    [5] W. D. Kingery,H. K. Brown, D. R. Uhlmann ,Introduction to ceramics , 2nd ed.,John Wiley and Sons, New York (1976)
    [6] 邱碧秀,電子陶瓷,徐氏基金會,Ch3 (1988)
    [7] 梅立人,添加LiF對CaCu3Ti4O12的介電、導電和顯微結構的影響,國立成功大學資源工程研究所碩士論文 (2006)
    [8] 劉適家,Ba[ZrxZn1-x/3Nb2(1-x)/3]O3 介電陶瓷之微波特性及其應用,國立成功大學電機工程研究所碩士論文 (2001)
    [9] C. G.. Koops, “On the dispersion of Resistivity and Dielectric Constant of Some Semiconductor at Audiofrequencies,” Phys. Rev., 83 (1) , 121-124 (1951)
    [10] D. C. Sinclair and A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature of resistance,” J. Appl. Phys., 66 (8) , 3850-3856 (1989)
    [11] Y. Bai and J. Zhilun, “Preparation and magnetic characterization of Y-type hexaferrites containing zinc, cobalt and copper,” Mater. Sci. Eng., B 99, 266-269
    (2002)
    [12] Y. Bai and J. Zhilun, “The effect of Bi substitution on phase formation and low temperature sintering of Y-type hexagonal ferrite,” J. Electroceram., 21, 349-352 (2007)
    [13] Y. Bai and J. Zhilun, “The physics properties of Bi-Zn codoped Y-type hexagonal Ferrite,” J. Alloys. Comp., 450, 412-416 (2006)
    [14] G. H . Hwang, W. Y. Kim, H. J. Jeon, and Y. S. Kim, “Physical properties of barrier ribs of plasma display panels. Part 2. Effects of fillers,” J. Am. Ceram. Soc., 85, 2961-2964 (2002)
    [15] G. H . Hwang, , W. Y. Kim, H. J. Jeon, and Y. S. Kim , “Physical properties of barrier ribs of plasma display panels. Part I. Formation of pores during sintering
    of lead borosilicate glass frits,” J. Am. Ceram. Soc., 85, 2956-2960 (2002)
    [16] E. S. Lim, B. S. Kim, and J. H. Lee, “Dielectric , thermal and sintering behavior of BaO-B2O3-SiO2 glasses with the addition of Al2O3,” J. Electroceram., 17, 359-363 (2006)
    [17] C. S. Lee, J. R. Yoo, K. W. Jung, and S. C. Choi, “Fabrication of Pb free solder glass for electronic packaging application,” J. Korean. Ceram. Soc., 38, 628-633 (2001)
    [18] D. N. Kim, J. Y. Lee, J. S. Huh, and H. S. Kim, “Thermal and electrical properties of BaO–B2O3–ZnO glasses,” J. Non-Cryst. Solids., 306, 70-75 (2002)
    [19] R. Clasen, “Preparation of high-purity silica glass by sintering of colloidal Particles,” Glastech. Ber., 60, 125-132 (1987)
    [20] J. S. Kim and C. I., Cheon, “Crystallization and void formation in ZnO–B2O3–SiO2–MgO sintered solder glasses,” J. Mater. Sci., 32, 1575-1579 (1997)
    [21] M. O. Pardo and E. D. Zanotto,“Glass sintering with concurrent crystallization,” C. R. Chim., 5, 773-786 (2002)
    [22] L. Zhien, S. Yihui, D. Xijiang, and C. Jijian, “Preparation and crystallization of
    Ultrafine Li2O-Al2O3-SiO2 powders,” J. Mater. Sci., 30, 390-394 (1995)
    [23] Y. W. Park and B. S. Hyun, “Studies on the sintering of the cordierite glass–ceramics,” J. Korean. Ceram. Soc., 29, 779-784 (1992)
    [24] B. S. Kim and E. S. Lim, “Effect of Bi2O3 content on sintering and crystallization behavior of low-temperature firing Bi2O3-B2O3-SiO2 glasses,” J. Eur. Ceram Soc., 27, 819-824 (2007)
    [25] 陳泰豪,低溫共燒型介電-磁性陶瓷複合材料,國立成功大學大學資源工程研究所碩士論文 (2007)
    [26] M. Randall,Liquid phase sintering,New York (1985)
    [27] M. M. Costa, G. F. M. Pires Junior, A. S. B. Sombra., “Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2Y type hexaferrite
    (Ba2Co2Fe12O22 (Co2Y)),” Mater. Chem. Phys., 123, 35-39 (2010)
    [28] J. Topfer,and H. Kahnt, “Microstructural effects in low loss power ferrites,” J. Eur. Ceram. Soc., 25, 3045-3049 (2005)
    [29] Y. Bai, J. Zhou, Z. Gui, L. Li, “Magnetic properties of Cu,Zn-modified Co2Y Hexaferrites,” J. Magn. Magn. Mater., 246, 140-144 (2002)

    下載圖示 校內:2012-08-23公開
    校外:2012-08-23公開
    QR CODE