簡易檢索 / 詳目顯示

研究生: 陳羿霏
Chen, Yi-Fei
論文名稱: 探討抗藥性相關miRNA於大腸癌
Study of Drug-resistant miRNA in Colon Cancer
指導教授: 賴明德
Lai, Ming-Derg
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 86
中文關鍵詞: 化療藥物耐藥性微小RNA大腸癌奧沙利鉑Drosha
外文關鍵詞: Chemotherapy-resistant, microRNA, colon cancer, oxaliplatin, Drosha
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據世界衛生組織2018 年的報告,結直腸癌是全世界癌症死亡的第二大原因。目前最常用的治療方法為手術切除、化療及放療。近期多種化療藥物研究顯示,癌症患者在單獨給予或併用化療藥物能顯著改善其總體存活率。奧沙利鉑和5-FU 常用於治療結腸癌; 然而,奧沙利鉑的臨床應用受到腎毒性和耐藥性的限制。此外,化療藥物耐藥性仍是癌症醫學上尚未闡明的重要課題,而其化療藥抗性的機制迄今也還未明瞭。在過去十年間的研究指出,微小RNA 表現量的改變與癌症進展相關,並提出許多關miRNA 在耐藥性發展中起作用的機制。作為參與miRNA 生合成的關鍵酶,Drosha 的下調與許多癌症的預後不良有關。因此,在我們先前的研究中,我們使用HCT116 和奧沙利鉑抗性HCT116 細胞株來進一步探討鉑類藥物作用和耐藥機制。根據我們先前的研究顯示,Drosha 的下調增加了人類結腸癌細胞株HCT116 中對奧沙利鉑的抗性。為了進一步研究miRNA 在化療藥抗性機制中的作用,我們希望找到一種潛在的miRNA,它受到Drosha 下調的影響,進而在結腸癌中發揮化療耐藥作用。我們首先通過次世代測序(NGS)分析miRNA 整體的表現量變化。然後利用生物資訊學分析工具篩選出具潛力的候選miRNA。並接著確認候選miRNA 的表達量,通過qRT-PCR 證實了HCT116 奧沙利鉑抗性細胞株和HCT116 shDROSHA 細胞中miR-33a-5p,miR-1229-3p 和miR-4738-3p 的增加。為了研究miRNA 對人類結腸癌的化學抗性作用,我們使用具有高度專一性的antagomir 轉染HCT116 奧沙利鉑抗性細胞以減少候選miRNA 表現量。接著利用qRT-PCR 以驗證我們的生物資訊學預測。Antagomir-33a-5p 的miRNA 減弱效果得到了證實,我們的初步功能性探討結果表明,減弱miR-33a-5p 可以略微增強細胞遷移和細胞增殖能力。 然而,mir-33a-5p 在奧沙利鉑耐藥性結直腸癌中的特徵尚不完全清楚,未來還需要更多的實驗以供進一步研究。本論文提出的研究可能有助於改進miRNA 導向的治療方法,並可能為antagomirs 在癌症醫學中的應用上提供新的契機。

    According to the world health organization, 2018, colorectal cancer is the second leading cause of cancer mortality all over the world. Nowadays, the most commonly used treatment, such as surgical resection, chemotherapy, and radiotherapy. Advancement of different chemotherapy regimens have improved patients overall survival. Oxaliplatin and 5-FU are widely used in treating colon cancer; however, the clinical use of oxaliplatin is limited by nephrotoxicity and drug resistance. Moreover, chemotherapeutic drug resistance is still a significant barrier in effective management of resistant tumor. The mechanisms of chemo-resistance are yet to be fully clarified. Over the past decade, altered Micro RNAs levels are associated with cancer progression. Many mechanisms have been postulated for the roles that miRNAs play in the development of drug resistance. As a key enzyme involved in miRNA biogenesis, downregulation of Drosha is associated with poor prognosis in many cancers. Therefore, in our previous study, we used HCT116 and oxaliplatin resistant HCT116 cell lines to characterize platinum drug action and further explore the mechanism of drug resistance. Our last data showed that downregulation of Drosha increases the resistance to oxaliplatin in human colon cancer cell line HCT116. To further investigate the role of miRNA in the chemo-resistant mechanism, we aim to find a potential miRNA, which is influenced by downregulation of Drosha and consequently play a chemotherapy-resistance role in colon cancer. We first analyze the global alter of miRNA expression by next-generation sequencing (NGS). And then make use of bioinformatics analysis tool to filter the potential candidate miRNA. We next examined the expression of candidate miRNA, qRT-PCR confirmed an increase of miR-33a-5p, miR-1229-3p, and miR-4738-3p in both HCT116 oxaliplatin resistant cell line and HCT116 shDROSHA cell. To investigate the effects of miRNAs on chemo-resistance CRC cell, the HCT116 oxaliplatin resistance cell was transfected with specific antagomirs to knockdown candidate miRNAs. Then qRT-PCR was performed to validate our bioinformatics prediction. We confirmed the knockdown effect of antagomir-33a-5p, and our preliminary functional assay result suggests that knockdown miR-33a-5p slightly improve cell migration and cell proliferation. However, the characteristics of mir-33a-5p in oxaliplatin-resistant colorectal cancer are not completely clear, and more experiments are needed in the future for further investigation. The research presented in this thesis may aid in the rational design of improved miRNAs based therapy and yield insights into the use of antagomirs for the cancer therapy application.

    中文摘要 I ABSTRACT II 誌謝 IV INTRODUCTION - 1 - I. COLORECTAL CANCER AND THE THERAPY STRATEGY - 1 - II. CHEMOTHERAPY AND CHEMO-RESISTANCE - 1 - III. DROSHA AND MICRORNA PROCESSING MACHINERY - 2 - IV. DOWN-REGULATION OF DROSHA DESENSITIZED THE CYTOTOXIC EFFECT OF CHEMOTHERAPY IN COLON CANCER. - 3 - V. MICRORNAS PARTICIPATE IN CHEMO-RESISTANT - 3 - VI. RESEARCH STRATEGY AND METHOD - 4 - MATERIAL AND METHOD - 6 - I. CELL CULTURE - 6 - II. LENTIVIRUS-MEDIATED GENE KNOCKDOWN - 9 - III. CELL TRANSIENT TRANSFECTION ESTABLISHMENT - 10 - IV. REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION (RT-PCR) - 11 - V. REAL-TIME PCR (QPCR) - 13 - VI. WESTERN BLOT - 14 - VII. MTT ASSAY - 21 - VIII. COLONY FORMATION ASSAY - 22 - IX. TRANSWELL ASSAY - 23 - X. WOUND HEALING ASSAY - 24 - XI. BIOINFORMATIC ANALYSIS - 24 - RESULT - 28 - I. TRANSIENT KNOCKDOWN OF DROSHA ALTERED MIRNA EXPRESSION IN HCT116 PARENTAL AND OXALIPLATIN-RESISTANCE CELL LINE. - 28 - II. THE CANDIDATE MIRNAS ARE INVOLVED IN THE RESISTANCE-RELATED PATHWAY. - 28 - III. THE ROLE OF CANDIDATE MIRNAS IN COLON CANCER PATIENTS’ PROGNOSIS. - 29 - IV. PREDICTING EFFECTIVE MIRNA TARGET SITES AND MIRNA FUNCTIONAL ANNOTATION. - 30 - V. MIRNA LOSS-OF-FUNCTION PHENOTYPE - 31 - DISCUSSION - 33 - I. CANCER CELLS RESPONSE TO CHEMOTHERAPY VIA GENE ALTERATION. - 33 - II. CHEMOTHERAPY-RESISTANT AND THE ALTERATION OF MIRNA PROCESSING MACHINERY. - 34 - III. MIRNA INFLUENCE THE CYTOTOXIC EFFECT OF CHEMOTHERAPY. - 34 - CONCLUSIONS - 37 - REFERENCES - 38 - TABLE - 52 - TABLE 1. THE TARGET GENE OF THE CANDIDATE MIRNA - 52 - TABLE 2. THE TARGET GENE HAS BEEN REPORTED ASSOCIATED WITH CHEMOTHERAPY RESISTANT. - 60 - TABLE 3. THE PREDICTED TARGET SITE OF THE CANDIDATE MIRNA. - 62 - FIGURES - 63 - FIGURE 1. MIRNA BIOGENESIS. - 63 - FIGURE 2. ANALYSIS OF NGS RESULT. - 66 - FIGURE 3. PATHWAY PREDICTION OF THE CANDIDATE MIRNA. - 68 - FIGURE 4. THE EFFECT OF CANDIDATE MIRNAS HIGH EXPRESSION IN RECTUM CARCINOMA PATIENTS. - 70 - FIGURE 5. FUNCTIONAL ANNOTATION OF CANDIDATE MIRNAS. - 73 - FIGURE 6. QUANTIFICATION OF THE MIRNA. - 76 - FIGURE 7. CELL GROWTH OF ANTAGOMIR-33A-5P TRANSFECTED OXALIPLATIN RESISTANCE HCT116. - 77 - FIGURE 8. CELL MIGRATION OF ANTAGOMIR-33A-5P TRANSFECTED OXALIPLATIN RESISTANCE HCT116. - 79 - FIGURE 9. CELL PROLIFERATION OF ANTAGOMIR-33A-5P TRANSFECTED OXALIPLATIN RESISTANCE HCT116. - 80 - ADDENDUM - 81 - TABLE S 1. SHORT HAIRPIN RNA ID AND SEQUENCE - 81 - TABLE S 2. ANTAGOMIR SEQUENCE - 82 - TABLE S 3. REAL TIME PCR PRIMER - 83 - FIGURE S1. LOSS OF FUNCTION ANALYSIS BY ANTAGOMIR. - 84 - FIGURE S2. THE THREE CANDIDATE MIRNAS HAVE A PATHWAY IN COMMON. - 86 -

    1. Heavey PM, McKenna D, Rowland IR. 2004. Colorectal cancer and the relationship between genes and the environment. Nutr Cancer 48: 124-41
    2. Greene FL, Stewart AK, Norton HJ. 2004. New tumor-node-metastasis staging strategy for node-positive (stage III) rectal cancer: an analysis. J Clin Oncol 22: 1778-84
    3. Wolpin BM, Mayer RJ. 2008. Systemic treatment of colorectal cancer. Gastroenterology 134: 1296-310
    4. Dienstmann R, Salazar R, Tabernero J. 2015. Personalizing colon cancer adjuvant therapy: selecting optimal treatments for individual patients. J Clin Oncol 33: 1787-96
    5. Auclin E, Zaanan A, Vernerey D, Douard R, Gallois C, Laurent-Puig P, Bonnetain F, Taieb J. 2017. Subgroups and prognostication in stage III colon cancer: future perspectives for adjuvant therapy. Ann Oncol 28: 958-68
    6. Vogel A, Hofheinz RD, Kubicka S, Arnold D. 2017. Treatment decisions in metastatic colorectal cancer - Beyond first and second line combination therapies. Cancer Treat Rev 59: 54-60
    7. Andre T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, Bonetti A, Clingan P, Bridgewater J, Rivera F, de Gramont A. 2009. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 27: 3109-16
    8. Carvalho C, Glynne-Jones R. 2017. Challenges behind proving efficacy of adjuvant chemotherapy after preoperative chemoradiation for rectal cancer. Lancet Oncol 18: e354-e63
    9. Gill S, Loprinzi CL, Sargent DJ, Thome SD, Alberts SR, Haller DG, Benedetti J, Francini G, Shepherd LE, Francois Seitz J, Labianca R, Chen W, Cha SS, Heldebrant MP, Goldberg RM. 2004. Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much? J Clin Oncol 22: 1797-806
    10. Gray R, Barnwell J, McConkey C, Hills RK, Williams NS, Kerr DJ. 2007. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet 370: 2020-9
    11. Kuebler JP, Wieand HS, O'Connell MJ, Smith RE, Colangelo LH, Yothers G, Petrelli NJ, Findlay MP, Seay TE, Atkins JN, Zapas JL, Goodwin JW, Fehrenbacher L, Ramanathan RK, Conley BA, Flynn PJ, Soori G, Colman LK, Levine EA, Lanier KS, Wolmark N. 2007. Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: results from NSABP C-07. J Clin Oncol 25: 2198-204
    12. Todd RC, Lippard SJ. 2009. Inhibition of transcription by platinum antitumor compounds. Metallomics 1: 280-91
    13. Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, Tu CC, Vijaya Padma V, Kuo WW, Huang CY. 2018. Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol 233: 5458-67
    14. Longley DB, Johnston PG. 2005. Molecular mechanisms of drug resistance. J Pathol 205: 275-92
    15. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. 2014. Drug resistance in cancer: an overview. Cancers (Basel) 6: 1769-92
    16. Vitsios DM, Davis MP, van Dongen S, Enright AJ. 2017. Large-scale analysis of microRNA expression, epi-transcriptomic features and biogenesis. Nucleic Acids Res 45: 1079-90
    17. Kim VN. 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6: 376-85
    18. Si W, Shen J, Zheng H, Fan W. 2019. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 11: 25
    19. Jiangpan P, Qingsheng M, Zhiwen Y, Tao Z. 2016. Emerging Role of microRNA in Neuropathic Pain. Curr Drug Metab 17: 336-44
    20. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415-9
    21. Sperber H, Beem A, Shannon S, Jones R, Banik P, Chen Y, Ku S, Varani G, Yao S, Ruohola-Baker H. 2014. miRNA sensitivity to Drosha levels correlates with pre-miRNA secondary structure. Rna 20: 621-31
    22. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. 2006. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125: 887-901
    23. Shen J, Hung MC. 2015. Signaling-mediated regulation of MicroRNA processing. Cancer Res 75: 783-91
    24. Han Y, Liu Y, Gui Y, Cai Z. 2013. Inducing cell proliferation inhibition and apoptosis via silencing Dicer, Drosha, and Exportin 5 in urothelial carcinoma of the bladder. J Surg Oncol 107: 201-5
    25. Guo X, Liao Q, Chen P, Li X, Xiong W, Ma J, Li X, Luo Z, Tang H, Deng M, Zheng Y, Wang R, Zhang W, Li G. 2012. The microRNA-processing enzymes: Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J Cancer Res Clin Oncol 138: 49-56
    26. Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martinez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, Tamez-Pena JG, Trevino V. 2013. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS One 8: e74250
    27. Ambros V. 2004. The functions of animal microRNAs. Nature 431: 350-5
    28. Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-97
    29. Lewis BP, Burge CB, Bartel DP. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-20
    30. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. 2003. Prediction of mammalian microRNA targets. Cell 115: 787-98
    31. Ellwanger DC, Buttner FA, Mewes HW, Stumpflen V. 2011. The sufficient minimal set of miRNA seed types. Bioinformatics 27: 1346-50
    32. Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. 2006. MicroRNA expression and function in cancer. Trends Mol Med 12: 580-7
    33. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. 2004. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101: 2999-3004
    34. Allen KE, Weiss GJ. 2010. Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9: 3126-36
    35. Zhou Y, Wan G, Spizzo R, Ivan C, Mathur R, Hu X, Ye X, Lu J, Fan F, Xia L, Calin GA, Ellis LM, Lu X. 2014. miR-203 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase. Mol Oncol 8: 83-92
    36. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. 2005. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438: 685-9
    37. Nagy A, Lanczky A, Menyhart O, Gyorffy B. 2018. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep 8: 9227
    38. Kozomara A, Birgaoanu M, Griffiths-Jones S. 2019. miRBase: from microRNA sequences to function. Nucleic Acids Res 47: D155-d62
    39. Liu W, Wang X. 2019. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol 20: 18
    40. Agarwal V, Bell GW, Nam JW, Bartel DP. 2015. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4
    41. Lee H, Kim C, Kang H, Tak H, Ahn S, Yoon SK, Kuh HJ, Kim W, Lee EK. 2017. microRNA-200a-3p increases 5-fluorouracil resistance by regulating dual specificity phosphatase 6 expression. Exp Mol Med 49: e327
    42. Bitarte N, Bandres E, Boni V, Zarate R, Rodriguez J, Gonzalez-Huarriz M, Lopez I, Javier Sola J, Alonso MM, Fortes P, Garcia-Foncillas J. 2011. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells 29: 1661-71
    43. Wan LY, Deng J, Xiang XJ, Zhang L, Yu F, Chen J, Sun Z, Feng M, Xiong JP. 2015. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy in vitro by targeting FOXM1. Biochem Biophys Res Commun 457: 125-32
    44. Fang L, Li H, Wang L, Hu J, Jin T, Wang J, Yang BB. 2014. MicroRNA-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing PTEN expression. Oncotarget 5: 2974-87
    45. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R. 2007. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12: 395-402
    46. Al-Jamal HA, Jusoh SA, Yong AC, Asan JM, Hassan R, Johan MF. 2014. Silencing of suppressor of cytokine signaling-3 due to methylation results in phosphorylation of STAT3 in imatinib resistant BCR-ABL positive chronic myeloid leukemia cells. Asian Pac J Cancer Prev 15: 4555-61
    47. Rivlin N, Brosh R, Oren M, Rotter V. 2011. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer 2: 466-74
    48. Bonanno L, Favaretto A, Rosell R. 2014. Platinum drugs and DNA repair mechanisms in lung cancer. Anticancer Res 34: 493-501
    49. Tanaka N, Toyooka S, Soh J, Kubo T, Yamamoto H, Maki Y, Muraoka T, Shien K, Furukawa M, Ueno T, Asano H, Tsukuda K, Aoe K, Miyoshi S. 2012. Frequent methylation and oncogenic role of microRNA-34b/c in small-cell lung cancer. Lung Cancer 76: 32-8
    50. Elhanati S, Kanfi Y, Varvak A, Roichman A, Carmel-Gross I, Barth S, Gibor G, Cohen HY. 2013. Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep 4: 905-12
    51. Yan Y, Zhang D, Lei T, Zhao C, Han J, Cui J, Wang Y. 2019. MicroRNA-33a-5p suppresses colorectal cancer cell growth by inhibiting MTHFD2. Clin Exp Pharmacol Physiol
    52. Moore MJ, Scheel TK, Luna JM, Park CY, Fak JJ, Nishiuchi E, Rice CM, Darnell RB. 2015. miRNA-target chimeras reveal miRNA 3'-end pairing as a major determinant of Argonaute target specificity. Nat Commun 6: 8864
    53. Liu B, Li J, Cairns MJ. 2014. Identifying miRNAs, targets and functions. Brief Bioinform 15: 1-19
    54. Xu P, Zhang G, Hou S, Sha LG. 2018. MAPK8 mediates resistance to temozolomide and apoptosis of glioblastoma cells through MAPK signaling pathway. Biomed Pharmacother 106: 1419-27
    55. He K, Zheng X, Li M, Zhang L, Yu J. 2016. mTOR inhibitors induce apoptosis in colon cancer cells via CHOP-dependent DR5 induction on 4E-BP1 dephosphorylation. Oncogene 35: 148-57
    56. Yadav SS, Kumar M, Varshney A, Yadava PK. 2019. KLF4 sensitizes the colon cancer cell HCT-15 to cisplatin by altering the expression of HMGB1 and hTERT. Life Sci 220: 169-76
    57. Li Y, Huang S, Li Y, Zhang W, He K, Zhao M, Lin H, Li D, Zhang H, Zheng Z, Huang C. 2016. Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. Tumour Biol 37: 14205-15
    58. Blanco FF, Jimbo M, Wulfkuhle J, Gallagher I, Deng J, Enyenihi L, Meisner-Kober N, Londin E, Rigoutsos I, Sawicki JA, Risbud MV, Witkiewicz AK, McCue PA, Jiang W, Rui H, Yeo CJ, Petricoin E, Winter JM, Brody JR. 2016. The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells. Oncogene 35: 2529-41
    59. Xiao G, Li Y, Wang M, Li X, Qin S, Sun X, Liang R, Zhang B, Du N, Xu C, Ren H, Liu D. 2018. FBXW7 suppresses epithelial-mesenchymal transition and chemo-resistance of non-small-cell lung cancer cells by targeting snai1 for ubiquitin-dependent degradation. Cell Prolif 51: e12473
    60. Wu WD, Wang M, Ding HH, Qiu ZJ. 2016. FBXL5 attenuates RhoGDI2-induced cisplatin resistance in gastric cancer cells. Eur Rev Med Pharmacol Sci 20: 2551-7
    61. Wang B, Shen A, Ouyang X, Zhao G, Du Z, Huo W, Zhang T, Wang Y, Yang C, Dong P, Watari H, Pfeffer LM, Yue J. 2017. KLF4 expression enhances the efficacy of chemotherapy drugs in ovarian cancer cells. Biochem Biophys Res Commun 484: 486-92
    62. Baharudin R, Ab Mutalib NS, Othman SN, Sagap I, Rose IM, Mohd Mokhtar N, Jamal R. 2017. Identification of Predictive DNA Methylation Biomarkers for Chemotherapy Response in Colorectal Cancer. Front Pharmacol 8: 47
    63. Chang H, Rha SY, Jeung HC, Jung JJ, Kim TS, Kwon HJ, Kim BS, Chung HC. 2010. Identification of genes related to a synergistic effect of taxane and suberoylanilide hydroxamic acid combination treatment in gastric cancer cells. J Cancer Res Clin Oncol 136: 1901-13
    64. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, Yin J, Song Y, Liu H, Lu M, Zhang Z, Gu Y, He Z. 2016. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl) 94: 1129-41
    65. Onishi H, Ichimiya S, Yanai K, Umebayashi M, Nakamura K, Yamasaki A, Imaizumi A, Nagai S, Murahashi M, Ogata H, Morisaki T. 2018. RBPJ and MAML3: Potential Therapeutic Targets for Small Cell Lung Cancer. Anticancer Res 38: 4543-7
    66. Zheng R, Lian S, Huang X, Guan G, Li X, Chi P, Xu B. 2019. The survival benefit of intensified full-dose XELOX chemotherapy concomitant to radiotherapy and then resting-period consolidation chemotherapy in locally advanced rectal cancer. J Cancer 10: 730-6
    67. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. 2013. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13: 714-26
    68. Pietrantonio F, Morano F, Corallo S, Miceli R, Lonardi S, Raimondi A, Cremolini C, Rimassa L, Bergamo F, Sartore-Bianchi A, Tampellini M, Racca P, Clavarezza M, Berenato R, Caporale M, Antista M, Niger M, Smiroldo V, Murialdo R, Zaniboni A, Adamo V, Tomasello G, Giordano M, Petrelli F, Longarini R, Cinieri S, Falcone A, Zagonel V, Di Bartolomeo M, de Braud F. 2019. Maintenance Therapy With Panitumumab Alone vs Panitumumab Plus Fluorouracil-Leucovorin in Patients With RAS Wild-Type Metastatic Colorectal Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol
    69. Longley DB, Harkin DP, Johnston PG. 2003. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3: 330-8
    70. Graham J, Mushin M, Kirkpatrick P. 2004. Oxaliplatin. Nat Rev Drug Discov 3: 11-2
    71. Giglia-Mari G, Zotter A, Vermeulen W. 2011. DNA damage response. Cold Spring Harb Perspect Biol 3: a000745
    72. Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B, Majidinia M. 2018. DNA damage response and repair in colorectal cancer: Defects, regulation and therapeutic implications. DNA Repair (Amst) 69: 34-52
    73. Bouwman P, Jonkers J. 2012. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12: 587-98
    74. Bian XJ, Zhang GM, Gu CY, Cai Y, Wang CF, Shen YJ, Zhu Y, Zhang HL, Dai B, Ye DW. 2014. Down-regulation of Dicer and Ago2 is associated with cell proliferation and apoptosis in prostate cancer. Tumour Biol 35: 11571-8
    75. Kawahara K, Nakayama H, Nagata M, Yoshida R, Hirosue A, Tanaka T, Nakagawa Y, Matsuoka Y, Kojima T, Takamune Y, Yoshitake Y, Hiraki A, Shinohara M. 2014. A low Dicer expression is associated with resistance to 5-FU-based chemoradiotherapy and a shorter overall survival in patients with oral squamous cell carcinoma. J Oral Pathol Med 43: 350-6
    76. Lai HH, Lin LJ, Hung LY, Chen PS. 2018. Role of Dicer in regulating oxaliplatin resistance of colon cancer cells. Biochem Biophys Res Commun 506: 87-93
    77. Cawley K, Logue SE, Gorman AM, Zeng Q, Patterson J, Gupta S, Samali A. 2013. Disruption of microRNA biogenesis confers resistance to ER stress-induced cell death upstream of the mitochondrion. PLoS One 8: e73870
    78. Hummel R, Wang T, Watson DI, Michael MZ, Van der Hoek M, Haier J, Hussey DJ. 2011. Chemotherapy-induced modification of microRNA expression in esophageal cancer. Oncol Rep 26: 1011-7
    79. Xu Y, Yao H, Wang Q, Xu W, Liu K, Zhang J, Zhao H, Hou G. 2018. Aquaporin-3 Attenuates Oxidative Stress-Induced Nucleus Pulposus Cell Apoptosis Through Regulating the P38 MAPK Pathway. Cell Physiol Biochem 50: 1687-97
    80. Schmidt EM, Lamprecht S, Blaj C, Schaaf C, Krebs S, Blum H, Hermeking H, Jung A, Kirchner T, Horst D. 2018. Targeting tumor cell plasticity by combined inhibition of NOTCH and MAPK signaling in colon cancer. J Exp Med 215: 1693-708
    81. Spartalis C, Schmidt EM, Elmasry M, Schulz GB, Kirchner T, Horst D. 2019. In vivo effects of chemotherapy on oncogenic pathways in colorectal cancer. Cancer Sci
    82. Hou H, Kang Y, Li Y, Zeng Y, Ding G, Shang J. 2017. miR-33a expression sensitizes Lgr5+ HCC-CSCs to doxorubicin via ABCA1. Neoplasma 64: 81-91
    83. Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, Fang Y, Lin X, Xu Y, Xu W, Shen H, Wen J. 2014. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer 135: 1286-96
    84. Hao GJ, Hao HJ, Ding YH, Wen H, Li XF, Wang QR, Zhang BB. 2017. Suppression of EIF4G2 by miR-379 potentiates the cisplatin chemosensitivity in nonsmall cell lung cancer cells. FEBS Lett 591: 636-45
    85. Kato T, Fujita Y, Nakane K, Kojima T, Nozawa Y, Deguchi T, Ito M. 2012. ETS1 promotes chemoresistance and invasion of paclitaxel-resistant, hormone-refractory PC3 prostate cancer cells by up-regulating MDR1 and MMP9 expression. Biochem Biophys Res Commun 417: 966-71
    86. Sun Y, Jiang Y, Huang J, Chen H, Liao Y, Yang Z. 2017. CISD2 enhances the chemosensitivity of gastric cancer through the enhancement of 5-FU-induced apoptosis and the inhibition of autophagy by AKT/mTOR pathway. Cancer Med 6: 2331-46
    87. Feng M, Xiong G, Cao Z, Yang G, Zheng S, Qiu J, You L, Zheng L, Zhang T, Zhao Y. 2018. LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer. J Exp Clin Cancer Res 37: 274
    88. Duxbury MS, Ito H, Benoit E, Waseem T, Ashley SW, Whang EE. 2004. A novel role for carcinoembryonic antigen-related cell adhesion molecule 6 as a determinant of gemcitabine chemoresistance in pancreatic adenocarcinoma cells. Cancer Res 64: 3987-93
    89. Liu W, Wang Q, Li F, Zhang S, Cao L. 2017. [Correlations between the p-Akt-mTOR-p70S6K pathway and clinicopathological features or chemoresistance of ovarian cancer]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 42: 882-8
    90. Wang XY, Jensen-Taubman SM, Keefe KM, Yang D, Linnoila RI. 2012. Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O(6)-methylguanine-DNA methyltransferase. PLoS One 7: e52832
    91. Wang Y, Garabedian MJ, Logan SK. 2015. URI1 amplification in uterine carcinosarcoma associates with chemo-resistance and poor prognosis. Am J Cancer Res 5: 2320-9
    92. Zhang X, Hua L, Yan D, Zhao F, Liu J, Zhou H, Liu J, Wu M, Zhang C, Chen Y, Chen B, Hu B. 2016. Overexpression of PCBP2 contributes to poor prognosis and enhanced cell growth in human hepatocellular carcinoma. Oncol Rep 36: 3456-64
    93. Xue J, Chi Y, Chen Y, Huang S, Ye X, Niu J, Wang W, Pfeffer LM, Shao ZM, Wu ZH, Wu J. 2016. MiRNA-621 sensitizes breast cancer to chemotherapy by suppressing FBXO11 and enhancing p53 activity. Oncogene 35: 448-58
    94. Xu H, Yan M, Patra J, Natrajan R, Yan Y, Swagemakers S, Tomaszewski JM, Verschoor S, Millar EK, van der Spek P, Reis-Filho JS, Ramsay RG, O'Toole SA, McNeil CM, Sutherland RL, McKay MJ, Fox SB. 2011. Enhanced RAD21 cohesin expression confers poor prognosis and resistance to chemotherapy in high grade luminal, basal and HER2 breast cancers. Breast Cancer Res 13: R9
    95. De S, Cipriano R, Jackson MW, Stark GR. 2009. Overexpression of kinesins mediates docetaxel resistance in breast cancer cells. Cancer Res 69: 8035-42
    96. Lu Y, Yang Y, Liu Y, Hao Y, Zhang Y, Hu Y, Jiang L, Gong Y, Wu K, Liu Y. 2017. Upregulation of PAG1/Cbp contributes to adipose-derived mesenchymal stem cells promoted tumor progression and chemoresistance in breast cancer. Biochem Biophys Res Commun 494: 719-27
    97. Liu CY, Hsu CC, Huang TT, Lee CH, Chen JL, Yang SH, Jiang JK, Chen WS, Lee KD, Teng HW. 2018. ER stress-related ATF6 upregulates CIP2A and contributes to poor prognosis of colon cancer. Mol Oncol 12: 1706-17
    98. Gao Y, Liu X, Li T, Wei L, Yang A, Lu Y, Zhang J, Li L, Wang S, Yin F. 2017. Cross-validation of genes potentially associated with overall survival and drug resistance in ovarian cancer. Oncol Rep 37: 3084-92
    99. Shi H, Mao Y, Ju Q, Wu Y, Bai W, Wang P, Zhang Y, Jiang M. 2018. C-terminal binding protein2 mediates cisplatin chemoresistance in esophageal cancer cells via the inhibition of apoptosis. Int J Oncol 53: 167-76
    100. Huynh M, Pak C, Markovina S, Callander NS, Chng KS, Wuerzberger-Davis SM, Bakshi DD, Kink JA, Hematti P, Hope C, Asimakopoulos F, Rui L, Miyamoto S. 2018. Hyaluronan and proteoglycan link protein 1 (HAPLN1) activates bortezomib-resistant NF-kappaB activity and increases drug resistance in multiple myeloma. J Biol Chem 293: 2452-65
    101. Zheng YH, Hu WJ, Chen BC, Grahn TH, Zhao YR, Bao HL, Zhu YF, Zhang QY. 2016. BCAT1, a key prognostic predictor of hepatocellular carcinoma, promotes cell proliferation and induces chemoresistance to cisplatin. Liver Int 36: 1836-47
    102. Zhu Y, Liu XJ, Yang P, Zhao M, Lv LX, Zhang GD, Wang Q, Zhang L. 2014. Alkylglyceronephosphate synthase (AGPS) alters lipid signaling pathways and supports chemotherapy resistance of glioma and hepatic carcinoma cell lines. Asian Pac J Cancer Prev 15: 3219-26
    103. Bhutia YD, Hung SW, Krentz M, Patel D, Lovin D, Manoharan R, Thomson JM, Govindarajan R. 2013. Differential processing of let-7a precursors influences RRM2 expression and chemosensitivity in pancreatic cancer: role of LIN-28 and SET oncoprotein. PLoS One 8: e53436
    104. Fu Q, Jiang Y, Zhang D, Liu X, Guo J, Zhao J. 2016. Valosin-containing protein (VCP) promotes the growth, invasion, and metastasis of colorectal cancer through activation of STAT3 signaling. Mol Cell Biochem 418: 189-98
    105. Li Y, Chen HQ, Chen MF, Liu HZ, Dai YQ, Lv H, Bing Zu X, Qi L. 2009. Neuroendocrine differentiation is involved in chemoresistance induced by EGF in prostate cancer cells. Life Sci 84: 882-7
    106. Qiu J, Tao L, Wei Q, Zhang P. 2018. Knockdown of Arf6 increases drug sensitivity and inhibits proliferation, migration and invasion in gastric cancer SGC-7901 cells. Oncol Lett 15: 2147-52

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE