簡易檢索 / 詳目顯示

研究生: 阮功海
Hai, Nguyen Cong
論文名稱: 鋼鐵懸臂梁之高頻疲勞有限元分析
Finite Element Studies of Steel Cantilever Beam Under High Frequency Fatigue
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 47
中文關鍵詞: 有限元素分析反覆載荷疲勞裂紋擴張塑性熱彈耦合分析
外文關鍵詞: finite element analysis, cyclic loading, fatigue crack propagation, plasticity, coupled thermoelasticity
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 疲勞是工程上重要的課題,高頻疲勞是因為高速鐵路等相關產業,而衍生出的新課題。本論文探討(1)顯式與隱式動態分析的比較、(2) 疲勞裂紋擴張、(3)塑性分析,這些分析結果可作為後續對高頻疲勞問題的基礎。對於高頻疲勞問題,未來必須包含熱彈性效應與微結構效應。

    Fatigue is an important engineering problems in materials. High frequency fatigue is an increasing concern in modern society due to engineering applications of high-speed trains and such. In order to analyze and predict fatigue, this thesis focuses on the preliminary work to study high-frequency fatigue with the abaqus finite element commercial software. In this thesis, (1) the explicit and implicit dynamics finite element studies were performed under concentrated and surface loading to demonstrate the differences in the methods of analysis. (2) fatigue crack propagation problems were simulated with the finite element to demonstrate the capability of the abaqus in simulating the fatigue problems. (3) Plasticity is incorporated in the finite element studies to show model damage accumulations. Since the thermoelastic effects are not included in the present analysis, high-frequency effects are not reflected in the results of the current study. Furthermore, the microstructural effects are not considered. The above mentioned two key ingredients must be included in the future work to realistically predict high-frequency fatigue.

    LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii CHINESE ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Mechanical fatigue: general . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Fatigue of steel under high frequency . . . . . . . . . . . . . . . . . . 7 1.2.3 Rolling contact fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.4 Corrosion fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.5 Microstructural effects . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Theoretical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Basics of finite element calculation . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Coupled and uncoupled thermoelasticity . . . . . . . . . . . . . . . . . . . . . 19 2.3 Thermodynamic arguments of thermal-mechanical coupling . . . . . . . . . . 21 2.4 Isothermal vs. adiabatic elastic moduli . . . . . . . . . . . . . . . . . . . . . . 22 2.5 The virtual crack closure technique (VCCT) . . . . . . . . . . . . . . . . . . . 23 2.6 Crack opening with the cohesive elements . . . . . . . . . . . . . . . . . . . . 24 2.7 Cyclic hardening plasticity model . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Implicit and explicit dynamics calculations . . . . . . . . . . . . . . . . . . . 29 3.2 Fatigue crack growth with VCCT . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 Fatigue with the cyclic hardening model . . . . . . . . . . . . . . . . . . . . . 36 4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 APPENDICES VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    [1] Keehan and Enda. Effect of microstructure on Mechanical Properties of High strength steel weld metals. PhD thesis, Chalmers University of Technology and Goteborg University, June 2004. Department of Experimental Physics.
    [2] C. S. Kim. Microstructural-Mechanical Properties Relationships in WC-Co composite.PhD thesis, Carnegie Mellon University, Pittsburgh, PA 15213, USA, June 2004. Materials Science and Engineering Department.
    [3] F. J. Franklin, J. E. Garnham, C. L. Fletcher, A. Davis, and A. Kapoor. Modelling rail steel microstructure and its effect on wear and crack initiation. Wear, 265:1332–1341, 2008.
    [4] P. G. Forrest. Fatigue of metals. 1962.
    [5] Richard P. and Gangloff. Environmental cracking corrosion fatigue. Professor and Chair, Department of Materials Science and Engineering, Charlottesville, VA 22903.
    [6] S. Sivaprasad, S. Tarafder, V. R. Ranganath, M. Tarafder, and K. K. Ray. Corrosion fatigue crack growth behavior of naval steels. Corrosion Science, 48(8).
    [7] M. L. Schmidt, F. D. McGuire, and H. E. Lu. Mechanical working and steel processing. Iron and steel society /AIME, Warrendale, PA, USA, 1983.
    [8] R. I. Murakami, Y. H. Kim, and W. G. Ferguson. Fatigue fract. Eng. Mater.Struct., 14:741, 1991.
    [9] Guian Qian, Chengen Zhou, and Youshi Hong. Experimental and theoretical investigation of environmental media on very high cycle fatigue behavior for a structural steel. Acta Materiallia, 59.
    [10] C. P. Engler, R. J. Frisch, J. V. Lasecki, H. Mayer, and J. E. Allison. Effect of frequency and environment on high cycle fatigue of cast aluminum alloys. In: Proc Very High Cycle Fatigue 4. Ann Arbor, page 421, 2007.
    [11] K. Sawley and R. P. Reiff. Rail Failure Assessment for the Office of the Rail Regulator: An Assessment of Railtrack’s Methods for Managing Broken and Defective Rails. Transportation Technology Center, 2000.
    [12] J. E. Garnham and J. H. Beynon. Dry rolling-sliding wear of bainitic and pearlitic steels. Wear, 157:81–109, 1992.
    [13] A. J. Perez-Unzueta and J. H. Beynon. Microstructure and wear resistance of pearlitic rail steels. Wear, 162.
    [14] E. Magel, P. Sroba, K. Sawley, and J. Kalousek. Control of rolling contact fatigue of rails. Centre for Surface Transportation Technology, National Research Council Canada 511, 609 – 14th Street NW Calgary, Alberta, Canada T2N 2A1.
    [15] V. Bhangale, A. Kumar, and S. O. Dwivedi. Development of rolling contact fatigue and its prevention. Smart Materials and Structures, 14:850–861, 2005.
    [16] A. Ekberg and E. Kabo. Fatigue of railway wheels and rails under rolling contact and thermal loading- an overview. Wear, 258.
    [17] F. Sadeghi, B. Jalalahmadi, T. S. Slack, N. Raje, and N. K. Arakere. A Review of Rolling Contact Fatigue. Journal of Tribology, 131(041403).
    [18] D. S. Plesha M. E. Cook, R. D. Malkus. Concepts and applications of finite element analysis, 3rd. Edition,. John Wiley and Sons, New York, NY, 1989.
    [19] http://www.3ds.com/products/simulia/overview/.
    [20] T. Belendez, C. Neipp, and A. Belendez. Large and small deflections of a cantilever beam. European Journal of Physics, 23(3):371–379, 2002.
    [21] Jacob Lubliner. Plasticity theory. Berkeley,Macmillan Publishing Company, New York, 1990.

    無法下載圖示 校內:2017-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE