簡易檢索 / 詳目顯示

研究生: 陽靖宇
Yang, Ching-Yu
論文名稱: 六氟二酐基含氟聚亞醯胺的製備及作為介電材料之特性研究
Fabrication and Characterization of 6FDA-based Fluorinated Polyimides as Dielectrics for Microelectronic Application
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 164
中文關鍵詞: 含氟聚亞醯胺低介電材料
外文關鍵詞: polyimide, low-k
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用二階段法合成6FDA基含氟聚亞醯胺共聚物。利用控制BisAAF及PPD二胺之成份比例,與6FDA合成具不同結構之含氟聚亞醯胺。首先,對於含氟聚亞醯胺,分析其化學結構、成份、介電常數、玻璃轉換溫度、在空氣及N2下之5%熱裂解溫度、吸水性、機械性質、常見溶劑中之溶解度及在可見光範圍之光穿透率等基本特性。之後,利用濺鍍沉積5nm厚之Cr及Ta於6FDA-BisAAF及6FDA-PPD含氟聚亞醯胺上,透過X光光電子能譜儀觀察金屬與含氟聚亞醯胺之界面化學鍵結行為。在本研究的第三個部分利用O2及N2電漿處理對含氟聚亞醯胺做表面改質,探討經不同電漿處理後之含氟聚亞醯胺其表面化學結構的變化及表面水氣吸附行為。此外,經電漿處理前後之含氟聚亞醯胺將製作成金屬-絕緣體-半導體(MIS)結構,量測其漏電流行為。最後,本研究中探討低溫退火(低於含氟聚亞醯胺玻璃轉換溫度)及不同退火氣氛對含氟聚亞醯胺之影響。利用電容-電壓(C-V)量測對缺陷的敏感特性,觀察低溫退火參數對含氟聚亞醯胺之影響。
    由傅立葉轉換紅外線光譜儀的結果發現,本研究中之聚醯胺酸前驅物在經300℃ 1h之環化反應後,將完全轉變為聚亞醯胺。透過控制不同的單體比例將可以改變6FDA-BisAAF-PPD含氟聚亞醯胺共聚物之材料特性。隨著PPD含量的增加,6FDA-BisAAF-PPD含氟聚亞醯胺共聚物之玻璃轉換溫度由6FDA-BisAAF之317℃,提升到6FDA-PPD之365℃。含氟聚亞醯胺之機械強度亦隨著PPD含量的增加而上升。本研究中所合成之含氟聚亞醯胺在N2下的5%重量損失則介於530-540℃。6FDA-BisAAF-PPD含氟聚亞醯胺共聚物之介電常數值亦隨著PPD的含量的增加而升高,從6FDA-BisAAF之2.63上升至6FDA-PPD之2.87(@1MHz)。而本研究中所有之含氟聚亞醯胺在可見光波長範圍大於500nm時,皆可達到90%的光穿透率。
    經由X光光電子能譜儀的分析可以發現,在Cr及Ta金屬濺鍍過程中,電漿所造成之離子轟擊將會破壞C-CF3鍵結,造成含氟聚亞醯胺表面的去氟化反應。經離子轟擊所形成之斷鍵將會與沉積之金屬形成metal-C鍵結。此外,Cr及Ta沉積至含氟聚亞醯胺表面時亦會與聚亞醯胺結構中之羰基(C=O)反應而形成C-O-metal鍵結。透過熱力學的考量,將可以預測金屬與含氟聚亞醯胺間之界面反應及其可能產生之鍵結型態。
    分析經不同電漿處理之含氟聚亞醯胺可以發現,具不同結構之含氟聚亞醯胺在受到相同電漿處理時之反應極為類似。由實驗結果可以發現,O2電漿將會與含氟聚亞醯胺中的C原子反應形成C-O鍵結,並進一步破壞含氟聚亞醯胺表面結構。另一方面,N2電漿與含氟聚醯亞之反應性則多屬物理性之離子轟擊。N2電漿所造成表面不穩定鍵結將增加含氟聚亞醯胺之水氣吸附,進一步影響含氟聚亞醯胺之介電常數及漏電行為。
    為了了解退火參數對含氟聚亞醯胺之影響,6FDA-PPD/Si在經不同氣氛之熱處理(N2+H2及真空退火)後,利用硬式光罩沉積Cu電極製作Cu/6FDA-PPD/Si MIS電容器並量測其C-V曲線。由C-V曲線的結果可以發現,隨著退火溫度的增加,將會造成6FDA-PPD內正電荷的增加,導致平帶電壓往負電壓方向偏移。再次量測經存放在空氣一周時效處理後試片之C-V曲線則可以發現,所有試片之C-V曲線將會往理想C-V曲線方向偏移。相較於真空退火處理,N2+H2氣氛退火具有消除在熱處理中所產生之缺陷能力,並且在經空氣時效處理後有較低之介電常數表現。當應用6FDA-PPD含氟聚亞醯胺作為電子元件中之介電材料,熱處理的溫度及條件皆必須加以仔細評估及考慮。

    In this study, 6FDA-based fluorinated copolyimides were synthesized with different ratios of BisAAF, PPD diamines by a two-step method. Properties such as chemical structure, composition, dielectric constant, glass transition temperature, thermal decomposition temperature, water absorption, tensile properties and transmittance were investigated by using Fourier transform infrared spectrometry (FTIR), elemental analysis, impedance spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), tensile tester and UV-visible spectrophotometry. In the second part of the experimant, interfacial reaction between metals and fluorinated polyimides were examined by X-ray photoelectron spectroscopy (XPS) after thin metal films (5nm-thick Cr and Ta) were deposited onto the fluorinated polyimides. In addition, effects of O2 and N2 plasma surface modification on fluorinated polyimides were also investigated. XPS and thermal desorption spectroscopy (TDS) were used to examine the surface chemical states and water adsorption of these polyimides after O2 and N2 plasma treatment. The polyimides with or without plasma treatment, were made into metal-insulator-semiconductor (MIS) to investigate their leakage current behavior. Finally, capacitance-voltage (C-V) characteristics of Cu/6FDA-PPD/Si structure after different temperature annealing process were examined.
    The FTIR results suggest that all poly(amic acid) precursors are converted into polyimide after curing at 300℃ for 1h. Fluorinated polyimdes with different properties can be obtained by controlling the molar ratios of the monomers. The glass transition temperature(Tg), modulus, and tensile strength increase with increasing PPD content. The values of Tg increase from 317oC of pure 6FDA-BisAAF polyimide to 365oC of pure 6FDA-PPD polyimide. The 5% weight loss of fluorinated polyimides ranges from 530-540℃ in N2 atmosphere. Dielectric constants increase from 2.63 of pure 6FDA-BisAAF to 2.87 of pure 6FDA-PPD. The transmittances of all fluorinated polyimides are greater than 90% at the wavelength above 500nm.
    Metal(Cr, Ta)-fluorinated polyimide interfacial reactions were investigated by XPS. XPS reveals that metal-C, C-O and metal-O bondings are presented in metallized fluorinated polyimides. Disappearance of the C-F bonding is attributed to the disruption of CF3 side groups from these polyimides when they are exposed to the plasma during the metal deposition. Nevertheless, the disruption of CF3 side groups also creates sites for the formation of metal-C bondings. Cr and Ta may react with the C=O bondings in the imide structure and forming C-O-metal bondings after reaching the polyimide surface. The reactions between metal and polyimides can be predicted through thermodynamical calculation.
    Surface modification of 6FDA-based fluorinated polyimides by O2 or N2 plasma was carried out and the material characteristics of the surfaces after plasma treatment were investigated. X-ray photoelectron spectroscopy analysis reveals that O2 plasma will react with carbon atoms in the polyimide structure to form C-O bonding on the surface and destroy the polyimide structure. On the other hand, chemical reactions between nitrogen and fluorinated polyimides are not obvious. The unstable bonds created by the N2 plasma treatment may absorb more H2O molecules and degrade electrical characteristics.
    Finally, the capacitance-voltage (C-V) characteristics of Cu/6FDA-PPD/Si metal-insulator-semiconductor (MIS) capacitors after different annealing processes were investigated. During annealing (in N2 + H2 ambient and in vacuum), positive charges are generated in the capacitors and it leads to a shift of flat-band voltage (VFB) toward the negative bias direction. However, the VFB of the annealed samples moves backward (the positive bias direction) after aging at room temperature in air for 1 week. Comparing with vacuum annealing, N2+H2 annealing can reconstruct the broking bonds created during annealing and reveal a lower dielectric constant after aging in air for 1 week. Therefore, when applying 6FDA-PPD as dielectrics in microelectronic devices, one must be careful on the annealing condition and the service temperature even though it is well below the Tg.

    總目錄 第1章 前言與研究目的 1 1-1 前言 1 1-2 研究目的 5 第2章 理論基礎 6 2-1 積體電路系統之發展及低介電常數材料的應用 6 2-2 低介電常數材料的需求及低介電材料開發 8 2-2-1 低介電材料的需求 8 2-2-2 常見之低介電材料 10 2-3 相關文獻回顧 19 2-3-1 聚亞醯胺的合成 19 2-3-2 含氟聚亞醯胺性質 21 2-3-3 高分子/聚亞醯胺與金屬界面 23 2-3-4 高分子/聚亞醯胺電漿表面處理相關文獻 25 2-3-5 MIS電容器結構之絕緣層缺陷型態及其C-V表現 27 第3章 實驗方法與步驟 31 3-1 實驗流程 31 3-2 實驗材料 37 3-2-1 基材 37 3-2-2 實驗材料 37 3-2-3 實驗使用相關藥品 37 3-2-4 金屬靶材 38 3-2-5 鍍膜及退火使用氣體 38 3-3 含氟聚亞醯胺合成及成膜 39 3-4 實驗設備 41 3-4-1 濺鍍系統(sputter system) 41 3-4-2 電子束蒸鍍系統(E-beam evaporation system) 42 3-4-3 電漿處理系統(plasma treatment system) 43 3-4-4 退火處理系統(annealing system) 44 3-5 分析儀器 46 3-5-1 聚醯胺酸固有黏度(inherent viscosity)測定 46 3-5-2 聚亞醯胺元素成份測定(elemental analysis) 46 3-5-3 傅立葉轉換紅外線光譜分析儀 (Fourier Transform Infrared Spectroscope, FTIR) 47 3-5-4 表面粗度儀 (alpha-step profilometer) 47 3-5-5 熱重量分析 (thermogravity analysis, TGA) 48 3-5-6 示差掃瞄熱量分析 (differential scanning calorimetry, DSC) 49 3-5-7 紫外光-可見光光譜儀 (UV-Vis spectrophotometer) 51 3-5-8 拉力測試 (tensile test) 51 3-5-9 熱脫附常壓質譜儀 (thermal desorption spectroscope, TDS) 52 3-5-10 阻抗分析儀 (impedance spectroscope) 52 3-5-11 X光光電子能譜儀 (X-ray photoelectron spectroscope, XPS) 53 3-5-12 原子力顯微鏡 (atomic force microscope, AFM) 54 3-5-13 溶解度測試 (solubility test) 54 3-5-14 電感、電容及電阻量測儀 (LCR meter)與微微安培計量儀(picoampere meter) 55 第4章 結果與討論 57 4-1 六氟二酐基(6FDA-based)含氟聚亞醯胺合成及性質 58 4-1-1 含氟聚亞醯胺之合成 58 4-1-2 含氟聚亞醯胺之基本特性 64 4-2 六氟二酐基(6FDA-based)含氟聚亞醯胺與金屬間界面反應 72 4-2-1 6FDA-BisAAF及6FDA-PPD表面化學鍵結 72 4-2-2 Cr/6FDA-BisAAF, Cr/6FDA-PPD界面化學鍵結 78 4-2-3 Ta/6FDA-BisAAF, Ta/6FDA-PPD界面化學鍵結 84 4-2-4 濺鍍金屬與含氟聚亞醯胺界面行為 89 4-3 表面電漿處理對六氟二酐基(6FDA-based)含氟聚亞醯胺之影響 94 4-3-1 O2、N2電漿對六氟二酐基含氟聚亞醯胺表面化學鍵結之影響 94 4-3-2 O2及N2電漿對六氟二酐基含氟聚亞醯胺電性之影響 106 4-3-3 O2及N2電漿對6FDA-BisAAF含氟聚亞醯胺表面型態及熱脫附行為之探討 111 4-3-4 O2電漿與六氟二酐基含氟聚亞醯胺之反應 116 4-3-5 N2電漿與六氟二酐基含氟聚亞醯胺之反應 119 4-4 低溫熱處理對Cu/6FDA-PPD/Si MIS電容器電性之影響 122 4-4-1 退火氣氛及溫度對含氟聚亞醯胺之電性影響 122 4-4-2 時效處理(aging)對Cu/6FDA-PPD/Si MIS電容器電性影響 126 第5章 結論 131

    參考文獻
    1. The International Technology Roadmap for Semiconductor, Interconnect (Semiconductor Industry Association, San Jose, 2006 Update).
    2. S. P. Murarka, Multilevel interconnections for ULSI and GSI, Mater. Sci. Eng. R 19, 87 (1997).
    3. S. W. Lim, Y. Shimogaki, Y. Nakano, and K. Tada, Preparation of low dielectric constant F-doped SiO2 films by plasma enhanced chemical vapor deposition, Appl. Phys. Lett. 68, 832 (1996).
    4. S. M. Han and E. S. Aydil, Structure and chemical composition of fluorinated SiO2 films deposited using SiF4/O2 plasmas, J. Vac. Sci. Technol. A 15, 2893 (1997).
    5. M. J. Loboda, New solutions for intermetal dielectrics using trimethylsilane-based PECVD process, Microelectron. Eng. 50, 15 (2000).
    6. Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, and T. Sakurai, High mobility of pentacene field-effect transistors with polyimide gate dielectric layers, Appl. Phys. Lett. 84, 3789 (2004).
    7. T. Sekitani, S. Iba, Y. Kato, and T. Someya, Pentacene field-effect transistors on plastic films operating at high temperature above 100oC, Appl. Phys. Lett. 85, 3902 (2004).
    8. W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors, Appl. Phys. Lett. 85, 5052 (2004).
    9. T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, T. Someya, and T. Sakurai, Suppression of DC bias stress-induced degradation of organic field-effect transistors using postannealing effects, Appl. Phys. Lett. 87, 073505 (2005).
    10. W. B. Jackson, R. L. Hoffman, and G. S. Herman, High-performance flexible zinc tin oxide field-effect transistors, Appl. Phys. Lett. 87, 193503 (2005).
    11. T. Ohta, T. Nagano, K. Ochi, Y. Kubozono, and A. Fujiwara, Field-effect transistors with thin films of perylene on SiO2 and polyimide gate insulators, Appl. Phys. Lett. 88, 103506 (2006).
    12. T. Sekitani, T. Someya, and T. Sakurai, Effects of annealing on pentacene field-effect transistors using polyimide gate dielectric layers, J. Appl. Phys. 100, 024513 (2006).
    13. S. Pyo, H. Son, K.-Y. Choi, M. H. Yi, and S. K. Hong, Low-temperature processable inherently photosensitive polyimide as a gate insulator for organic thin-film transistors, Appl. Phys. Lett. 86, 133508 (2005).
    14. S. Pyo, J. Choi, Y. Oh, H. Son, and M. H. Yi, Effect of surface-modified polyimide gate insulator through hybridization on the performance of organic thin-film transistors, Appl. Phys. Lett. 88, 173501 (2006).
    15. M. Maccioni, E. Orgiu, P. Cosseddu, S. Locci, and A. Bonfiglio, Towards the textile transistor: Assembly and characterization of an organic field effect transistor with a cylindrical geometry, Appl. Phys. Lett. 89, 143515 (2006).
    16. B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung, J. –Y. Hwang and D.-S. Seo, Transparent conductive Al-doped ZnO films for liquid crystal displays, J. Appl. Phys. 99, 124505 (2006).
    17. G.-S. Ryu, K.-B. Choe, C.-K. Song, Array of organic thin film transistors integrated with organic light emitting diodes on a plastic substrate, Thin Solid Films 514, 302 (2006).
    18. J.-H. Choi, K.-H. Kim, S.-J. Choi, and H. H. Lee, Whole device printing for full colour display with organic light emitting diodes, Nanotechnology 17, 2246 (2006).
    19. L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park, and T. N. Jackson, All-organic active matrix flexible display, Appl. Phys. Lett. 88, 083502 (2006).
    20. G. P. Kushto, W. Kim, and Z. H. Kafafi, Flexible organic photovoltaics using conducting polymer electrodes, Appl. Phys. Lett. 86, 093502 (2005)
    21. M. B. Schubert, and J. H. Werner, Flexible solar cells for clothing, Materials Today 9, 42 (2006).
    22. M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dnnler, N. S. Sariciftci, L. Hu, and G. Gruner, Organic solar cells with carbon nanotube network electrodes, Appl. Phys. Lett. 88, 233506 (2006).
    23. H. Gleskova, I-C. Cheng, S. Wagner, J. C. Sturm, and Z. Suo, Mechanics of thin-film transistors and solar cells on flexible substrates, Solar energy 80, 687 (2006).
    24. J. Jang, Displays develop a new flexibility, Materials Today 9, 46 (2006).
    25. X. W. Lin and D. Pramanik, Future interconnect technologies and copper metallization, Solid State. Tech. Oct., 63 (1998).
    26. W. W. Lee and P. S. Ho, Low-dielectric-constant materials for ULSI interlayer-dielectric applications, MRS Bull. 22, 19 (1997)
    27. S. P. Murarka, Low dielectric constant materials for interlayer dielectric applications, Solid State Tech. 39, 83 (1996).
    28. P. Mandracci, S. Ferrero, C. Ricciardi, L. Scaltrito, G. Richieri, and C. Sgorlon, Low temperature growth of SiO2 on SiC by plasma enhanced chemical vapor deposition for power device application, Thin Sold Films 427, 142 (2003).
    29. L.-N. He, and S. Hasegawa, Thickness dependence of properties of plasma-deposited amorphous SiO2 films, Jpn. J. Appl. Phys. 40, 4672 (2001).
    30. C. Lim, and J. Hanna, Improvements in electrical characteristics of plasma enhanced chemical vapor deposition-Tetraethylorthosilicate-SiO2 by atomic hydrogen passivation via hot-wire technique, Jpn. J. Appl. Phys. 45, L1270 (2006).
    31. J. Y. Kim, M. S. Hwang, Y.-H. Kim, H. J. Kim, and Y. Lee, Origin of low dielectric constant of carbon-incorporated silicon oxide film deposited by plasma enhanced chemical vapor deposition, J. Appl. Phys. 90, 2469 (2001).
    32. J. D. Plummer, M. D. Deal, P. B. Griffin, Silicon VLSI technology fundamentals, practice and modeling, (Prentice Hall, New Jersey, 2000).
    33. H. Treichel, G. Ruhl, P. Ansmann, R. Würl, Ch. Müller, and M. Dietlmeier, Low dielectric constant materials for interlayer dielectric, Microelectronic Engineering, 40, 1 (1998).
    34. K. Machida, and H. Oikawa, SiO2 planarization technology with biasing and electron cyclotron resonance plasma deposition for submicron interconnections, J. Vac. Sci. Technol. B 4, 818 (1986).
    35. O. A. Popov, and H. Waldron, Electron cyclotron resonance plasma stream source for plasma enhanced chemical vapor deposition, J. Vac. Sci. Technol. A 7, 914 (1989).
    36. Y. L. Cheng, Y. L. Wang, C. W. Liu, Y. L. Wu, K. Y. Lo, C. P. Liu, J. K. Lan, Characterization and reliability of low dielectric constant fluorosilicate glass and silicon rich oxide process for deep sub-micron device application, Thin Solid Films, 398-399, 533 (2001).
    37. Z.-C. Wu, Z.-W. Shiung, C-C. Chiang, w.-H. Wu, M.-C. Chen, S.-M. Jeng, W. Chang, P.-F. Chou, S.-M. Jang, C.-H. Yu, and M.-S. Liang, Physical and electrical characterization od F- and C-doped low dielectric constant chemical vapor deposited oxides, J. Electrochem. Soc. 148, F115 (2001).
    38. G. Passemard, P. Fugier, P. Noel, F. Pires, and O. Demolliens, Study of fluorine stability in fluoro-silicate glass and effect on dielectric constant, Microelectronic Engineering, 33, 335 (1997).
    39. L. Band, G. Passemard, Y. Gobil, H. M’Saad, A. Corte, F. Pires, P. Fugier, P. Noel, P. Rabinzohn, and I. Beinglass, Integration of a stack of two fluorine doped silicon oxide thin films with interconnect metallization for a sub-0.35 μm inter-metal dielectric application, Microelectronic Engineering, 37-38, 261 (1997).
    40. Q. Wu, and K. K. Gleason, Plasma-enhanced chemical vapor deposition of low-k dielectric films using methylsilane, dimethylsilane, and trimethylsilane precursors, J. Vac. Sci. Technol. A 21, 388 (2003).
    41. V. Ligatchev, T. K. S. Wong, B. Liu, and Rusli, Atomic structure and defect densities in low dielectric constant carbon doped hydrogenated silicon oxide films, deposited by plasma-enhanced chemical vapor deposition, J. Appl. Phys. 92, 4605 (2002).
    42. A. Grill, and V. Patel, Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane, J. Appl. Phys. 85, 3314 (1999).
    43. T. Furusawa, D. Ryuzaki, R. Yoneyama, Y. Homma, and K. Hinode, Heat and moisture resistance of siloxane-based low-dielectric-constant materials, J. Electrochem. Soc. 148, F175 (2001).
    44. L. M. Han, J.-S. Pan, S.-M. Chen, N. Balasubramanian, J. Shi, L. S. Wong, and P. D. Foo, Characterization of carbon-doped SiO2 low k thin films preparation by plasma-enhanced chemical vapor deposition from tetramethylsilane, J. Electrochem. Soc. 148, F148 (2001).
    45. K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, Low dielectric constant materials for microelectronics, J. Appl. Phys. 93, 8794 (2003).
    46. P. S. Ho, J. Leu, and W. W. Lee, Low dielectric constant materials for IC applications, (Springer, Germany, 2003).
    47. P. Gonon, and A. Sylvestre, Dielectric properties of fluorocarbon thin films deposited by radio frequency sputtering of polytetrafluororthylene, J. Appl. Phys. 92, 4584 (2002).
    48. R. Schwödiauer, G. S. Neugschwandtner, S. Bauer-Gogonea, S. Bauer, and T. Rosenmayer, Dielectric and electret properties of nanomulsion spin-on polytetrafluoroethylene films, Appl. Phys. Lett. 76, 2612 (2000).
    49. I. Banerjee, M. Harker, L. Wong, P. A. Coon, and K. K. Gleason, Characterization of chemical vapor deposited amorphous fluorocarbons for low dielectric constant interlayer dielectrics, J. Electrochem. Soc. 146, 2219 (1999).
    50. S. Takeishi, H. Kudo, R. Shinohara, M. Hoshino, S. Fukuyama, J. Yamaguchi, and M. Yamada, Plasma-enhanced chemical vapor deposition of fluorocarbon films with high thermal resistance and low dielectric constants, J. Electrochem. Soc. 144, 1797 (1997).
    51. J. S. Juneja, G. A. T. Eyck, H. Bakhru, and T.-M. Lu, Pressure dependent Parylene-N pore sealant pentration in porous low-k dielectrics, J. Vac. Sci. Technol. B 23, 2232 (2005).
    52. J. J. Senkevich, A. Mallikarjunan, C. J. Wiegand, T.-M. Lu, H. N. Bani-Salameh, and R. L. Lichti, Correlation between bond cleavage in Parylene N and the degradation of its dielectric properties, Electrochem. Solid-State Lett. 7, G56 (2004).
    53. M. Morgen, S.-H. Rhee, J.-H. Zhao, I. Malik, T. Ryan, H.-M. Ho, M. A. Plano, and P. Ho, Comparison of crystalline phase transitions in fluorinated vs nonfluorinated parylene thin films, Macromolecules 32, 7555 (1999).
    54. B. Hanyaloglu, A. Aydinli, M. Oye, and E. S. Aydi, Low dielectric constant Parylene-F-like films for intermetal dielectric applications, Appl. Phys. Lett. 74, 606 (1999).
    55. L. You, G.-R. Yang, C.-I. Lang, J. A. Moore, P. Wu, J. F. McDonald, and T.-M.Lu, Vapor deposition of Parylene-F by pyrolysis of dibromotetrafluoro-p-xylene, J. Vac. Sci. Technol. A 11, 3047 (1993).
    56. E. T. Ryan, A. J. Mckerrow, J. Leu, and P. S. Ho, Materials issues and characterization of low-k dielectric materials, MRS Bull. 22, 49 (1997).
    57. J. A. Irvin, C. J. Neef, K. M. Kane, P. E. Cassidy, G. Tullos, and A. K. St. Clair, Polyethers derived from bisphenols and highly fluorinated aromatics, J. Polym. Sci. part A: Polymer Chemistry, 30, 1675 (1992).
    58. V. Percec, M. Grigoras, R. S. Clough, and J. Fanjul, Synthesis of molecular weight poly(ether ketone)s by polycondensation of activated bis(aryl chloride)s with bisphenolates, J. Polym. Sci. Part A: Polymer Chemistry, 33, 331 (1995).
    59. F. W. Mercer, M. M. Fone, and M. T. McKenzie, Synthesis and characterization of fluorinated poly(aryl ether ketone)s containing 1,4-naphthalene moieties, J. Polym. Sci. Part A: Polymer Chemistry, 35, 521 (1997).
    60. N. P. Hacker, Organic and inorganic spin-on polymers for low-dielectric-constant applications, MRS Bull. 22, 33 (1997)
    61. H. Chen, L. Xie, H. Lu, and Y. Yang, Ultra-low-k polyimide hybride films via copolymerization of polyimide and polyoxometalates, J. Mater. Chem. 17, 1258 (2007).
    62. S.-Y. Huang, C.-P. Yang, and S.-H. Hsiao, Processable and colorless fluorinated poly(ether imide)s based on an isopropylidene-containing bis(ether anhydride) and various aromatic bis(ether amine)s bearing trifluoromethyl groups, J. Appl. Polym. Sci. 104, 620 (2007).
    63. Y. Shao, Y.-F. Li, X. Zhao, X.-L. Wang, T. Ma, F.-C. Yang, Synthesis and properties of fluorinated polyimides from a new unsymmetrical diamine: 1,4-(2’-trifluoromethyl-4’,4”-diaminodiphenoxy)benzene, J. Polym. Sci. Part A: Polymer Chemistry, 44, 6836 (2006).
    64. C.-P. Yang, Y.-Y. Su, S.-J. Wen, S.-H. Hsiao, Highly optically transparent/low color polyimide films prepared from hydroquinone- or resorcinol-based bis(ether anhydride) and trifluoromethyl-containing bis(ether amine)s, Polymer 47, 7021 (2006).
    65. H.-S. Li, J.-G. Liu, J.-M. rui, L. Fan, S.-Y. Yang, Synthesis and characterization of novel fluorinated aromatic polyimides derived from 1,1-bis(4-amino-3,5-dimethylphenyl)-1-(3,5-ditrifluoromethylphenyl)-2,2,2-trifluoroethane and various aromatic dianhydrides, J. Polym. Sci. Part A: Polymer Chemistry, 44, 2665 (2006).
    66. L. Peters, Pursuing the perfect low-k dielectric, Semiconductor International Sep., 64 (1998).
    67. M. K. Ghosh, and K. L. Mittal, Polyimides fundamentals and applications, (Marcel Dekker Inc., New York, 1996).
    68. H. Chung, J. Lee, J. Hwang, H. Han, Mechanically stable copolyimide for low level stress buffer, Polymer 42, 7893 (2001).
    69. J. Seo, and H. Han, Water sorption behaviour of polyimide thin films with various internal linkages in the dianhydride component, Polym. Degrad. Stab. 77, 477 (2002).
    70. J. H. Kim, W. J. Koros, and D. R. Paul, Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part I. Transport properties, Polymer 47, 3094 (2006).
    71. T. Suzuki, Y. Yamada, and Y. Tsujita, Gas transport properties of 6FDA-TAPOB hyperbranched polyimide membrane, Polymer 45, 7167 (2004).
    72. W. Jang, D. Shin, S. Choi, S. Park, and H. Han, Effects of internal linkage groups of fluorinated diamine on the optical and dielectric properties of polyimide thin films, Polymer 48, 2130 (2007).
    73. C. W. Lee, S. M. Kwak, and T. H. Yoon, Synthesis and characterization of polyimides from bis(3-aminophenyl)-2,3,5,6-tetrafluoro-4-trifluoromethylphenyl phosphine oxide (mDA7FPPO), Polymer 47, 4140 (2006).
    74. S. Banerjee, M. K. Madhra, A. K. Salunke, D. K. Jaiswal, Synthesis and properties of fluorinated polyimides. 3. Derived from novel 1,3-bis[3’-trifluoromethyl-4’(4”-amino benzoxyl) benzene and 4,4-bis[3’-trifluoromethyl-4’(4-amino benzoxy) benzyl] biphenyl, Polymer 44, 613 (2003).
    75. K. U. Jeong, J.-J. Kim, and T.-H. Yoon, Synthesis and characterization of novel polyimides containing fluorine and phosphine oxide moieties, Polymer 42, 6019 (2001).
    76. R. H. Vora, S. H. Goh, and T.-S. Chung, Synthesis and properties of fluoro-polyetherimides, Polym. Eng. Sci. 40, 1318 (2000).
    77. P. S. G. Krishnan, and S. Veeramani, Effect of methyl group substituation in the diamine and copolymer composition on thermal degradation of copolyimides based on 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride, Polym. Degrad. Stab. 81, 225 (2003).
    78. T.-S. Leu, and C.-S. Wang, Synthesis and properties of copolyimides containing naphthalene group, Polymer 43, 7069 (2002).
    79. G. Maier, Low dielectric constant polymers for microelectronics, Prog. Polym. Sci. 26, 3 (2001).
    80. F. Li, S. Fang, J. J. Ge, P. S. Honigfort, J.-C. Chen, F. W. Harris, and S. Z. D. Cheng, Diamine architecture effects on glass transitions, relaxation process and other material properties in organo-soluble aromatic polyimide films, Polymer 40, 4571 (1999).
    81. Y. Tian, S. Liu, H. Ding, L. Wang, B. Liu, and Y. Shi, Formation of deformed honeycomb-patterned films from fluorinated polyimide, Polymer 48, 2338 (2007).
    82. H. M. Meyer, S. G.. Anderson, LJ. Atanasoska, and J. H. Weaver, Summary abstract: X-ray photoemission investigation of electron injection and tapping as the gold/polyimide interface, J. Vac. Sci. Technol. A 6, 1002 (1988).
    83. R. G. Mack, E. Grossman, and W. N. Unertl, Interaction of copper with a vapor deposited polyimide film, J. Vac. Sci. Technol. A 8, 3827 (1990).
    84. T. Strunskus, C. Hahn, D. Frankel, and M. Grunze, Interaction of evaporated copper with vapor-deposited thin polyimide films, J. Vac. Sci. Technol. A 9, 1272 (1991).
    85. R. Haight, R. C. White, B. D. Silverman, and P. S. Ho, Complex formation and growth at the Cr- and Cu-polyimide interface, J. Vac. Sci. Technol. A 6, 2188 (1988).
    86. J. G. Clabes, M. J. Goldberg, A. viebeck, and C. A. Kovac, Metal-polymer chemistry. I. charge-transfer-related modifications of polyimide(pyromellitic dianhydride-4,4’-oxydianiline), J. Vac. Sci. Technol. A 6, 985 (1988).
    87. M. J. Goldberg, J. G. Clabes, and C. A. Kovac, Metal-polymer chemistry. II. Chromium-polyimide interface reactions and related organometallic chemistry, J. Vac. Sci. Technol. A 6, 991 (1988).
    88. LJ. Atanasoska, S. G. Anderson, H. M. Meyer, Z. Lin, and J. H. Weaver, Aluminum/polyimide interface formation: An x-ray photoelectron spectroscopy study of selective chemical bonding, J. Vac. Sci. Technol. A 5, 3325 (1987).
    89. N. J. Chou, and C. H. Tang, Interfacial reaction during metallization of cured polyimid: An XPS study, J. Vac. Sci. Technol. A 2, 851 (1984).
    90. P. Bodö, and J.-E. sundgren, Ion bombardment and titanium film growth on polyimide, J. Vac. Sci. Technol. A 6, 2396 (1988).
    91. Y. Du, and J. A. Gardella, Jr., A study of the interaction between thermally deposited aluminum films and fluoropolymer substrates, J. Vac. Sci. Technol. A 13, 1907 (1995).
    92. M.-K. Shi, B. Lamontagne, A. Selmani, and L. Martinu, X-ray photoelectron spectroscopy study of x-ray irradiated metal/fluoropolymer interfaces, J. Vac. Sci. Technol. A 12, 44 (1994).
    93. M. K. Shi, B. Lamontagne, A. Selmani, L. Martinu, E. Sacher, M. R. Wertheimer, and A. Yelon, Metallization of Teflon PFA. I. Interactions of evaporated Cr and Al measured by x-ray photoelectron spectroscopy, J. Vac. Sci. Technol. A 12, 29 (1994).
    94. C. –A. Chang, Y. –K. Kim, and A. G. Schrott, Adhesion studies of metals on fluorocarbon polymer films, J. Vac. Sci. Technol. A 8, 3304 (1990).
    95. F.-M. Pan, J.-L. Huang, and C.-F. Liaw, Interface studies between transition metals and poly(vilylidene fluoride), J. Vac. Sci. Technol. A 11, 3076 (1993).
    96. M. Du, R. L. Oplia, C. Case, Interface formation between metals (Cu, Ti) and low dielectric constant organic polymer (FLARETM 1.0), J. Vac. Sci. Technol. A 16, 155 (1998).
    97. Y.-K. Kim, C.-A. Chang, and A. G. Schrott, Adhesion of metals to spin-coated fluorocarbon polymer films, J. Appl. Phys. 67, 251 (1990).
    98. D. L. Pappas, J. J. Cuomo, and K. G. Sachdev, Studies of adhesion of metal films to polyimide, J. Vac. Sci. Technol. A 9, 2704 (1991).
    99. B. K. Furman, K. D. Childs, H. Clearfield, R. Davis, and S. Purushothaman, Moisture-induced interfacial oxidation of chromium on polyimide, J. Vac. Sci. Technol. A 10, 2913 (1992).
    100. Y.-S. Lin, H.-M. Liu, and H.-T. Chen, Surface modification of polyimide films by argon plasma for copper metallization on microelectronic flex substrates, J. Appl. Polym. Sci. 99, 744 (2006).
    101. Y. C. Quan, S. Yeo, C. Shim, J. Yang, and D. Jung, Significant improvement of electrical and thermal properties of low dielectric constant plasma polymerized paraxylene thin films by postdeposition H2+He plasma treatment, J. Appl. Phys. 89, 1042 (2001).
    102. D. Bhusari, H. Hayden, R. Tanikella, S. A. B. Allen, and P. A. Kohl, Plasma treatment and surface analysis of polyimide films for electroless copper buildup process, J. Electrochem. Soc. 152, F162 (2005).
    103. T. E. F. M. Standaert, P. J. Matsuo, X. Li, G. S. Oehrlein, T.-M. Lu, R. Gutmann, C. T. Rosenmayer, and J. W. Bartz, High-density plasma patterning of low dielectric constant polymers: A comparision between polytetrafluoroethylene, parylene-N, and poly(arylene ether), J. Vac. Sci. Technol. A 19, 435 (2001).
    104. M. Du, R. L. Opila, V. M. Donnelly, J. Sapjeta, and T. Boone, The interface formation of copper and low dielectric constant fluoro-polymer: plasma surface modification and its effect on copper diffusion, J. Appl. Phys. 85, 1496 (1999).
    105. T.-C. Wei, C.-H. Liu, J.-M. Shieh, S.-C. Suen, and B.-T. Dai, Plasma treatment and dry etch characteristics of organic low-k dielectrics, Jpn. J. Appl. Phys. 39, 7015 (2000).
    106. S.-H. Yang, and J.-W. Park, Effect of post-plasma treatment time on the properties of low dielectric fluorinated amorphous carbon films, Jpn. J. Appl. Phys. 40, 694 (2001).
    107. J.-M. Shieh, K.-C. Tsai, B.-T. Dai, S.-C. Lee, C.-H. Ying, and Y.-K. Fang, Modifications of low dielectric constant fluorinated amorphous carbon films by multiple plasma treatments, J. Electrochem. Soc. 149, G384 (2002).
    108. S.-H. Yang, H. kim, and J.-W. Park, Surface modification of low dielectric fluorinated amorphous carbon films by nitrogen plasma treatment, Jpn. J. Appl. Phys. 40, 5990 (2001).
    109. L. J. Matienzo, J. A. Zimmerman, and F. D. Egitto, Surface modification of fluoropolymers with vacuum ultraviolet irradiation, J. Vac. Sci. Technol. A 12, 2662 (1994).
    110. B. Bae, D. Kim, H.-J. Kim, T.-H. Lim, I.-H. Oh, and H. Y. Ha, Surface characterization of Argon-plasma-modified perfluorosulfonic acid membranes, J. Phys. Chem. B 110, 4240 (2006).
    111. Y. W. Park, and N. Inagaki, A new approach for selective surface modification of fluoropolymers by remote plasmas, J. Appl. Polym. Sci. 93, 1012 (2004).
    112. S. R. Mattews, Y. J. Hwang, M. G. McCord, and M. A. Bourham, Investigation into etching mechanism of polyethylene terephthalate (PET) films treated in helium and oxygenated-helium atmospheric plasmas, J. Appl. Polym. Sci. 94, 2383 (2004).
    113. B. E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, IEEE Trans. Electron Dev. ED-27, 606 (1980)
    114. D. K. Schroder, Semiconductor material and device characterization 2nd ed., (Wiley, New York 1998).
    115. E. H. Nicollian, and J. R. Brews, MOS (Metal oxide semiconductor) physics and technology, (Wiley, New York 2003).
    116. 汪建民(編), 材料分析 Materials Analysis, (中國材料科學學會, 民國93年)
    117. 潘扶民, 四極質譜儀與表面科學, 科儀新知 13, 33 (1991).
    118. D. Briggs and M. P. Seah, Practical Surface Analysis, 2nd ed, Volume 1- Auger and X-ray Photoelectron Spectroscopy, (Wiley, Chichester, 1990).
    119. D. A. Shirley, High resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5, 4709 (1972).
    120. F. Li, K.-H. Kim, E. P. Savitski, J.-C. Chen, F. W. Harris, and S. Z. D. Cheng, Molecular weight and film thickness effects on linear optical anisotropy of 6FDA-PFMB polyimides, Polymer, 38, 3223 (1997).
    121. G. Beamson, and D. Briggs, High Resolution XPS of Organic Polymers : The Scienta ESCA300 Database, (Wiley, Chichester, 1992).
    122. I. Barin, Thermochemical data of pure substances, 3rd ed., (VCH, New York, 1995).
    123. E. J. Onah, Synthesis of polyfluoroesters, polyfluoroamic acid, polyfluoroimide, and polyfluoroacrylates: Formation and chacterization of their ultrathin films, Chem. Mater., 15, 4104 (2003).
    124. R. D. Chambers, D. T. Clark, D. Kilcast, and S. Partington, ESCA investigation of the electronic sctructure of polyhexafluorobut-2-yne, J. Polym. Sci.: Polymer Chemistry Edition, 12, 1647 (1974).
    125. N. Hirashita, S. Tokitoh, and H. Uchida, Thermal desorption and infrared studies of plasma-enhanced chemical vapor deposited SiO films with tetraethylorthosilicate, Jpn. J. Appl. Phys. Part 1, 32, 1787 (1993).
    126. R. Tsu, J. W. McPherson and W. R. McKee, Leakage and brealdown reliability issues associated with low-k dielectric in a dual-damascene Cu process, in Proceedings of the IEEE 38th International Reliability Physics Symposium, San Jose, California, 348 (2000).
    127. C. C. Chang, S.-K. JiangJian, and J. S. Chen, The influence of moisture and fluorine on the characteristics of fluorinated silicate glass for copper metallization, J. Electrochem. Soc. 153, G901 (2006).
    128. C.-M. Chan, Polymer Surface Modification and Characterization, (Hanser Publisher, New York, 1994).
    129. D. Filippini, R. Aragón, and U. Weimar, Gas sensing properties of copper gate metal-oxide-semiconductor capacitors, J. Vac. Sci. Technol., B 19, 825 (2001).
    130. M. Na, and S.-W. Rhee, Electronic characterization of Al/PMMA[poly(methyl methacrylate)]/p-Si and Al/CEP(cyanoethyl pullulan)/p-Si structures, Organic Electronics 7, 205 (2006).
    131. R. Bashir, T. Su, J. M. Sherman, G. W. Neudeck, J. Denton, and A. Obeidat, Reduction of sidewall defect induced currents by the use of nitrided field oxides in silicon selective epitaxial growth isolation for advanced untralarge scale integration, J. Vac. Sci. Technol. B, 18(2), 695 (2000)
    132. J. Lewis, Material challenge for flexible organic devices, Materialstoday 9, 38 (2006).
    133. A. Jain, V. Gupta, and S. N. Basu, A quantitative study of moisture adsorption in polyimide and its effect on the strength of the polyimide/silicon nitride interface, Acta Materialia 53, 3147 (2005).

    下載圖示 校內:2008-07-26公開
    校外:2017-07-26公開
    QR CODE