| 研究生: |
蔡欣蓉 Tsai, Hsin-Jung |
|---|---|
| 論文名稱: |
寶來台灣卓越50指數基金與TAIFEX台灣加權股價指數期貨價格間之預測能力及模擬交易分析 The Predictive Power and Forward Simulation between the Polaris Taiwan Top 50 Tracker Fund and TAIFEX Taiwan Stock Index Futures Price |
| 指導教授: |
李宏志
Li, Hong-Zhi 顏盟峯 Yan, Meng-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 台灣加權股價指數期貨 、寶來台灣卓越50指數基金 、誤差指數異質變異數模型 、狀態轉換指數異質變異數模型 、遺傳基因演算誤差指數異質變異數混合模型 、遺傳基因演算狀態轉換指數異質變異數混合模型 、向前模擬 |
| 外文關鍵詞: | TAIFEX Taiwan Stock Index Futures, Polaris Taiwan Top 50 Tracker Fund, EC-EGARCH, RS-EGARCH, EC-EGARCHGA, RS-EGARCHGA, Forward Simulation |
| 相關次數: | 點閱:214 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試分析台灣加權股價指數與台灣加權股價指數期貨之間的動態關係,樣本為2004年至2009年的台灣加權股價指數期貨與寶來台灣卓越50指數基金每小時的交易資料。本研究分為兩個部分,首先是檢測誤差指數異質變異數模型(EC-EGARCH)、狀態轉換指數異質變異數模型(RS-EGARCH)、遺傳基因演算誤差指數異質變異數混合模型(EC-EGARCHGA)及遺傳基因演算狀態轉換指數異質變異數混合模型(RS-EGARCHGA)這四個模型在價格預測的能力,以平均絕對誤差百分比(Mean Absolute Percentage Error, MAPE)、平均絕對誤差(Mean Absolute Error, MAE)、配對檢定(paired t-test)及費雪真實檢定(Fisher Exact Test)等檢定法來評估四種模型的預測績效。之後,對誤差指數異質變異數模型與遺傳基因演算誤差指數異質變異數混合模型使用向前模擬來檢定投資人是否可以在扣除交易成本、交易稅與無風險利率的情況獲取超額報酬。
使用配對t檢定所得到的結果為遺傳基因演算誤差指數異質變異數混合模型的預測準確度顯著勝過遺傳基因演算狀態轉換指數異質變異數混合模型,而遺傳基因演算狀態轉換指數異質變異數混合模型的預測準確度又優於狀態轉換指數異質變異數模型。在採用費雪真實檢定對預測方向性的檢測中,並無任何模型顯著優於其它模型。在向前模擬的實證結果中,不管是誤差指數異質變異數模型或遺傳基因演算誤差指數異質變異數混合模型都無法得到超額報酬,這表示市場是效率的,投資人無法透過這些交易策略得到超額報酬。
This study wants to analyze the dynamic relationship between TAIFEX Taiwan Stock Index and Index Futures. We apply intraday hourly data of TAIFEX Taiwan Stock Index Futures and Polaris Taiwan Top 50 Tracker Fund from January 1, 2004 through December 31, 2009 in this study. This research is divided into two parts. First, the study investigates the effectiveness of various price forecasting models including EC-EGARCH model, RS-EGARCH model, EC-EGARCHGA model and RS-EGARCHGA model. Then we evaluate which chosen models perform best in predicting price by Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), paired t-test and Fisher Exact Test. Second, we use forward simulation to examine whether investors can earn excess return that deduct the transaction cost, tax, and risk free rate by EC-EGARCH model and EC-EGARCHGA model.
After we apply paired t-test, we get an inference that EC-EGARCHGA has significantly better forecast performance than RS-EGARCHGA in precision of prediction whereas RS-EGARCHGA has more accuracy forecast than RS-EGARCH during 2004 to 2009 for both TAIFEX Taiwan Stock Index Futures and Polaris Taiwan Top 50 Tracker Fund. But there is no superior model in direction predicting between these models by Fisher exact test. The empirical result of forward simulation shows there is no excess return by using EC-EGARCH model and EC-EGARCHGA model and it implies the market is efficient.
1. Allen, F., and R. Karjalainen (1999), “Using Genetic Algorithms to Find Technical Trading Rules,” Journal of Financial Economics, 51, 245-271.
2. Ane, T., and U.-R. Loredana (2006), “Stock Market Dynamics in a Regime-Switching Asymmetric Power GARCH Model,” International Review of Financial Analysis, 15, 109-129.
3. Benz, E., and S. Trück (2009), “Modeling the Price Dynamics of CO2 Emission Allowances,” Energy Economics, 31(1), 4-15.
4. Bollen, N.P.B., S.F. Gray, and R.E. Whaley (2000), “Regime Switching in Foreign Exchange Rates: Evidence from Currency Option Prices,” Journal of Financial Economics, 94, 239-276.
5. Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31, 307-327.
6. Chiu, T.-Y., and S.-J. Shieh (2009), “Regime-Switched Volatility of Brent Crude Oil Futures with Markov-Switching Arch Model,” International Journal of Theoretical and Applied Finance, 12(2), 113-124.
7. Chuang, C.C. (2003), “International Information Transmissions between Stock Index Futures and Spot Markets: The Case of Futures Contracts Related to Taiwan Index,” Journal of Management Sciences, 19, 51-78.
8. Dickey, D.A., and W.A. Fuller (1979), “Distribution of the Estimators for Autoregressive Time Series with a Unit Root,” Journal of the American Statistics Association, 74, 427-431.
9. Engle, R.F., and B.S. Yoo (1987), “Forecasting and Testing in Cointegrated System,” Journal of Econometrics, 35, 143-159.
10. Engle, R.F., and C.W.J. Granger (1987), “Co-integration and an Error Correction: Representation, Estimation and Testing,” Econometrica, 55, 251-276.
11. Engle, R.F., and V.K. Ng (1993), “Measuring and Testing the Impact of News on Volatility,” Journal of Finance, 48, 1749-1778.
12. Fan, Y., Q. Liang, and Y.-M. Wei (2008), “A Generalized Pattern Matching Approach for Multi-Step Prediction of Crude Oil Price,” Energy Economics, 30(3), 889-904.
13. Floros, C., and D.V. Vougas (2007), “Lead-Lag Relationship between Futures and Spot Markets in Greece: 1999-2001,” International Research Journal of Finance and Economics, 7, 168-174.
14. Ghosh, A. (1993), “Cointegration and Error Correction Models: Intertemporal Causality between Index and Futures Prices,” The Journal of Futures Markets, 13, 193-198.
15. Goldberg, D.E., and K. Deb (1991), “A Comparative Analysis of Selection Schemes Used in Genetic Algorithms,” Foundations of Genetic Algorithms I, 69-93.
16. Gray, S.F. (1996), “Modeling the Conditional Distribution of Interest Rates as a Regime-Switching Process,” Journal of Financial Economics, 42, 27-62.
17. Hamilton, J.D., and R. Susmel (1994), “Autoregressive Conditional Heteroscedasticity and Changes in Regime,” Journal of Econometrics, 64, 307-333.
18. Hansen, P.R., and A. Lunde (2005), “A Forecast Comparison of Volatility Models: Does Anything Beat GARCH(1,1)?,” Journal of Applied Econometrics, 20, 873-889.
19. Hsu, H., and E. Ho (2000), “The Dynamic Interrelationship among TAIFEX Taiwan Stock Index Futures, SIMEX MSCI Taiwan Stock Index Futures, and TSE Stock Index,” Journal of National Cheng-Kung University, 35, 187-206.
20. Huang, Y.-C., and D. Shyu (1997), “An Evaluation of the Dynamic Interaction between Spot and Futures Markets for Taiwan Stock Index,” Review of Securities and Futures Markets, 9(3), 1-28.
21. Huang, Y.-C., P.-L. Huang, X.-Y. Liang, and S.-Y. Huang (2004), “The Lead and Lag Relationship of the Taiwan Stock Index and Index Futures: TAIFEX and SGX-DT,” Journal of Fu-Jen Management, 11(1), 125-152.
22. Kang, H.-H., and E. Ho (2001), “On Using GARCH Model to Investigate the Lead/Lag Relationships among SIMEX MSCI Taiwan Stock Index Futures, TAIFEX Taiwan Stock Index Futures, and TSE Stock Index,” Journal of Chinese Management, 4(2), 1-12.
23. Klaassen, F. (2002), “Improving GARCH Volatility Forecasts with Regime-Switching GARCH,” Empirical Economics, 27, 363-394.
24. Korczak, J.J. (2001), “Portfolio Design and Simulation Using Evolution Based Strategy: University of Worclaw, Poland”.
25. Koutmos, G., and M. Tucker (1996), “Temporal Relationships and Dynamics Interactions between Spot and Futures Stock Markets,” Journal of Futures Markets, 16(1), 55-69.
26. Lai, S.C., and H.C. Li (2006), “The Predictive Power of Quarterly Earnings Per Share Based on Time Series and Artificial Intelligence Model,” Applied Financial Economics, 16, 1325-1388.
27. Neely, C., P. Weller, and R. Ditmar (1997), “Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach,” Journal of Financial and Quantitative Analysis, 32, 405-26.
28. Neely, C.J., and P.A. Weller (2002), “Predicting Exchange Rate Volatility: Genetic Programming versus GARCH and Riskmetrics,” The Federal Reserve Bank of St. Louis, 43-54.
29. Phillips, P., and P. Perron (1988), “Testing for a Unit Root in Time Series Regression,” Biometrika, 75(2), 335-346.
30. Pizzi, M.A., A.J. Economopoulos, and H.M. O’Neill (1998), “An Examination of the Relationship between Stock Index Cash and Futures Markets: A Cointegration Approach,” Journal of Futures Markets, 18(3), 297-305.
31. Stoll, H. R., and R. E. Whaley (1990), “The Dynamics of Stock Index and Stock Index Futures Returns,” Journal of Financial and Ouantitative Analysis, 25(4), 441-468.
32. Tse, Y. (1999), “Price Discovery and Volatility Spillovers in the DJIA Index and Futures Markets,” Journal of Futures Market, 19, 911-930.
33. Wang Y.-S. (2000), “The Dynamic Relationship between Taiwan Stock Index Futures and Spot Markets,” The Journal of Hsing Wu College, 23, 331-359.
34. Yang, J., D.A. Bessler, and D.J. Leatham (2001), “Asset Storability and Price Discovery in Commodity Futures Markets: A New Look,” Journal of Futures Markets, 21, 279-300.
校內:2013-07-15公開