| 研究生: |
陳韋年 Chen, Wei-Nien |
|---|---|
| 論文名稱: |
應用新方法量測活體細胞的機械性質 A New Method Used to Evaluate the Mechanical Properties of Living Cells |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 細胞機械性質 、活體細胞 、原子力顯微鏡 |
| 外文關鍵詞: | PC12 cell, Mechanical Properties, AFM |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前世界上已發展出許多機台、模型和分析方法,來研究細胞的各種性質,但大部分都還有改進的空間,因此本研究的主題,是希望能利用與以往不同的分析方法,得到細胞內機械性質的縱向分佈。
以往的分析方法,其機械性質都只用一個值或範圍來表示,但細胞絕對不是一種均質性材料,因此這一個值或範圍其實是細胞內所有結構的機械性質合在一起所表現出來的行為。基於此,本研究將細胞分為三層:細胞骨架、細胞質和細胞核三層結構,再經由實驗與理論分析,得到細胞內部各區域的機械性質與其變化情形。
實驗部分是利用原子力顯微鏡掃描細胞的表面形貌後,在不同區域做數次的力-距離曲線,得到細胞負載和卸載時的實驗數據。理論部分則是將實驗數據,分別帶入負載-壓深以及卸載-壓深的關係式,經由兩式解聯立後得到各個區域的機械性質,由此方法計算機械性質,可避免接觸面積的估算,直接得到較快較正確的結果。另一方面,為了得到細胞內部在不同結構下其縱向機械性質的過渡變化,例如從細胞骨架到細胞質或細胞核,或者從細胞骨架到細胞質再到細胞核。這些情況都能夠利用exponential函數加上一個或兩個權重因子來完整的描述其過渡行為。
經由實驗與理論分析後,確實得到了細胞內三層結構的機械性質以及其內部過渡變化,再將本研究得到的楊氏模數,與曾經研究過同種類細胞的文獻比對後,確定本研究結果介於參考文獻的範圍內,證明了本研究的方法是可行的,也具體的說明細胞內不同高度、不同位置其機械性質都有可能是不同的。
There are many models and analytical methods have been developed in the world to study all kinds of property of the cells at present, but they are still have improved space. The theme of this research is using a new analytical method that different from the past to receive the vertical distribution of mechanical properties in cells.
In the past, the mechanical properties were expressed only used a value or a range; however, cells are not homogeneous material exactly. This value or range is actually the mixed result of the mechanical properties of all structure. In this research, the PC12 cell was divided into three layers: cytoskeleton, cytoplasm and nucleus; the mechanical properties and the interaction of every layer within cells were obtained by experiments and analysis.
The experiment part is that using AFM scanned surface of cell and perform several force-curves in different selected zones to obtain the loading and unloading data of cell. The analysis part is by bringing the experimental data into the load-depth and unload-depth equation, respectively. The values of mechanical properties can be solved simultaneously by combination of two equations. This method gives the advantage that the contact area is not necessary to evaluate since the contact area is not used. On the other hand, in order to get the transition of the PC12 mechanical properties in vertical direction under different structures within cell. For example: cytoskeleton → cytoplasm or nucleus, cytoskeleton → cytoplasm → nucleus. These transitions can be simulated completely by using exponential function and one or two weight factors.
After experiments and analysis, the mechanical properties and the inside transition of three layers have been obtained. Comparing our mechanical properties with those reported by the references, not only prove our proposed analysis is reasonable, but also concretely explain that the mechanical properties possibly change in the different depth and position.
1.Binning, G.; Rohrer, H.; 1987 ”scanning tunneling microscopy from birth to adolescence”, Rev. Modern Physics; Vol.59,615-619.
2.Binning, G.; Quate, C. F.; 1986 ” atomic force microscope”, Phys. Rev. Lett.; 56, 930-933.
3.Morris, V. J.; Kirby, A. R.; Gunning, A. P.; 1999 ”atomic force microscopy for biologists”, Imperial College Press: London.
4.Johannes Diderik van der Waals; 1967 ”Nobel Lectures, Physics, Elsevier Publishing Company, Amsterdam, 1901-1921.
5.Park Scientific Instruments Corp.; Users Guide to autoprobe CP, Part II.
6.NT-MDT Corp., SPM introduction, http://www.ntmdt.ru
7.張嘉峰;2006”應用原子力顯微術於PC12類神經細胞之生物力學研究”,國立成功大學微機電系統工程研究所;碩士論文.
8.Greene, L. A.; Tischler, A. S.; 1976 ”Establishment of a noradrenerergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor”, Proc Natl Acad Sci USA; Vol.73, 2424-2428.
9.Alberts et al, “Molecules of the cytoskeleton” London 1994.
10.Hertz H.; Miscellaneous Papers, 1896, Macmillan, London.
11.Pharr, G. M.; Oliver, W. C.; Brotzen, F. R.; 1992 ”On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation”, J. Mater. Res.; 7(3), 613-617.
12.Field, J. S.; Swain, M. V.; 1993 “A Simple Predictive Model for Spherical Indentation,” J. Mater. Res.; 8(2), 297-306.
13.Oliver, W. C.; Pharr, G. M.; 1992 “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Material Research; 7(4), 1564-1583, .
14.Sneddon, I. N.; 1965 “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile”, Int. J. Engng Sci.; 3, 47-57.
15.King, R. B.; 1987 “Elastic Analysis of Some Punch Problems for A layered Medium,” Int. J. Solids Structure; 23(12), 1657-1664.
16.魏伯任; 2005 ”奈米壓痕實驗應用於塊材、覆膜材料機械性質以及硬脆材料黏彈性質量測-理論分析與實驗印證”,國立成功大學機械工程研究所;博士論文.
17.Rother, B.; Jehn, H. A.; 1996 “Coating and interface characterization by depth-sensing indentation experiments”, Surface and Coating Technology; 85, 183-188.
18.Hainsworth, S. V.; Chandler, H. W.; Page, T. F.; 1996 “Analysis of nano -indentation load-displacement loading curves”, J. Mat. Res.; 11(8), 1987-1995.
19.Page, T. F.; Pharr, G. M.; Hay, J. C.; Oliver, W. C.; Lucas, B. N.; Herbert, E.; Riester, L.; 1998 ” Nanoindentation Characterization of Coated Systems: P/S2 - A New Approach Using the Continuous Stiffness Technique”, MRS Symp. Proc.; 522, 53-64.
20.原子力顯微鏡成像中文簡易操作手冊,成功大學醫學工程所生醫感測實驗室。
21.陳宏志; 2006 ”黏彈式原子力顯微鏡應用於液面下細胞表面之機械性質量測”,國立成功大學機械工程研究所;碩士論文.
22.Jochen Guck; Revathi Ananthakrishnan; C Casey Cunningham; Josef ks; 2002 “Stretching biological cells with light”, Journal of Physics: Condensed Matter; 14, 4843-4856.
23.Sato, M.; Nagayama, K.; 2000 “Local Mechanical Properties Measured by Atomic Force Microscopy for Cultured Bovine Endothelial Cells Exposed to Shear Stress”, J. Biomech.; 33, 127-135.
24.Mathur, A. B.; Collinsworth, A. M. 2001, “Endothelial, Cardiac Muscle and Skeletal Muscle Exhibit Different Viscous and Elastic Properties as Determined by Atomic Force Microscopy”, J. Biomech.; 34, 1545-1553.
25.Braet, F.; Rotch, C.; 1998 “Comparison of Fixed and Living Endothelial Cells by Atomic Force Microscopy”, Appl.Phys.; 66, 575-578.
26.Hochmuth, R. M.; Ting-Beall, H. P.; 1993 “Viscosity of Passive Human neutrophils undergoing Small Deformations”, Biophys. J.; 64, 1596-1601.
27.Hansma, H. G.; Hoh, J. H.; 1994 “Biomolecular Imaging with the Atomic Force Microscope”, Annu. Rev. Biophys. Chem.; 23, 115-139.
28.Miyazali, H.; Hayashi, K.; 1999 “Atomic Force Microscopic Measurement of the Mechanical Properties of Intact Endothelial Cells in Fresh Arteries”, Med.Biol.Eng.Comp.; 37, 560-536.
29.Rotch, C.; Braet, F.; 1997 “AFM Imaging and Elasticity Measurements on Living Rat Liver Macrophages”, Cell Biol.Inte.; 21, 685-696.
30.Rotch, C.; Jacobson, K.; 1999 “Dimensional and Mechanical Dynamics of Active and Stable Edges in Motile Fibroblasts Investigated by Using Atomic Force Microscopy”, Proc.Nat.Acad.Sci.USA; 96, 91-96.