| 研究生: |
蕭世杰 Hsiao, Shih-Chieh |
|---|---|
| 論文名稱: |
探討泰勒模型模擬和實驗間冷軋純銅優選方位強度差異之研究 Understanding the Difference in Preferred Orientation Intensity of Cold-Rolled Copper between Taylor Model Simulation and Experiment |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 冷軋銅 、泰勒模型 、軋延織構 、優選方位強度 |
| 外文關鍵詞: | Cold-rolled copper, Taylor model, Rolling texture, Intensity of preferred orientation |
| 相關次數: | 點閱:71 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬之優選方位在機械性質之異向性中扮演重要的角色。1980年代,Van Houtte提出修正之泰勒模型以預測實驗之軋延織構。至今,許多學者針對實驗以及模擬之優選方位演化進行研究,但無針對兩者間優選方位以及其方位強度之差異進行討論。因此,本論文中我們使用泰勒模型預測銅之軋延織構並比較實驗及模擬之優選方位強度差異。
本研究分為冷軋實驗和數值模擬。實驗中,銅以低和高單位軋延量進行冷軋。並以XRD和EBSD分析其織構和微結構。模擬中,使用泰勒模型對XRD所測織構進行預測。透過比較優選方位強度在實驗和模擬中之差異,我們試著去了解影響織構轉換之機制。
在低單位軋延量實驗擬合中,軋延量30%時,實驗之優選方位強度依序為S、R和Bs方位,模擬之優選方位強度依序為R、S和Bs方位。軋延量60%時,實驗之優選方位強度依序為S、R和Bs方位,模擬之優選方位強度依序為R、S和Bs方位。軋延量95%時,實驗之優選方位強度依序為S、R和Cu方位,模擬之優選方位強度依序為R、S和Bs方位。
高單位軋延量實驗擬合中,軋延量30%時,實驗之優選方位強度依序為S、Bs和R方位,模擬之優選方位強度依序為R、S和Bs方位。軋延量60%時,實驗之優選方位強度依序為Bs、S和R方位,模擬之優選方位強度依序為R、S和Bs方位。軋延量95%時,實驗之優選方位強度依序為S、R和D方位,模擬之優選方位強度依序為R、S和Bs方位。
The preferred orientation of metals plays a significant role at the anisotropy of mechanical properties. Thus quantitative simulation is important. In this study, for the experiment, cold-rolled copper’s texture and microstructure were measured by X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) respectively. For the simulation, the Taylor model is used to simulate the rolling texture and compare the difference between experiment and simulation quantitatively.
At 30% and 60% reductions, the difference in preferred orientation intensity in terms of volume fraction is less than 5%. At 95% reduction, the differences in preferred orientation intensity in terms of volume fraction are 14.35% and 19.35% respectively.
1. S. Yoshioka, M.M., K. Morii, The Effect of Rolling Rates on the Texture Development of Polycrystalline Copper. Transactions of the Japan Institute of Metals, 1974. 15(5): p. 350-356.
2. O. Engler, P.W., J. Savoie, D. Ponge, G. Gottstein, Strain rate sensitivity of flow stress and its effect on hot rolling texture development. Scripta metallurgica et materialia, 1993. 28(11): p. 1317-1322.
3. 吉野路英, et al., 1050 アルミニウムの冷延・再結晶集合組織に及ぼすロール径およびパススケジュールの影響. 軽金属, 2016. 66(11): p. 595-601.
4. P. Van Houtte, E.A., Considerations on the crystal and the strain symmetry in the calculation of deformation textures with the Taylor theory. Materials Science and Engineering, 1976. 23(1): p. 11-22.
5. S. R. Kalidindi, C.A.B., A. Anand, Crystallographic texture evolution in bulk deformation processing of FCC metals. Journal of the Mechanics and Physics of Solids, 1992. 40(3): p. 537-569.
6. J. J. Sidor, L.A.K., Analytical description of rolling textures in face-centred-cubic metals. Scripta Materialia, 2013. 68(5): p. 273-276.
7. G. L. Wu, A.G., D. J. Jensen, Q. Liu, Deformation strain inhomogeneity in columnar grain nickel. Scripta materialia, 2005. 53(5): p. 565-570.
8. Li, S., P.V. Houtte, and S.R. Kalidindi, A quantitative evaluation of the deformation texture predictions for aluminium alloys from crystal plasticity finite element method. Modelling and Simulation in Materials Science and Engineering, 2004. 12(5): p. 845.
9. Ray, R.K., Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys. Acta metallurgica et Materialia, 1995. 43(10): p. 3861-3872.
10. El-Danaf, E., S.R. Kalidindi, and R.D. Doherty, Influence of grain size and stacking-fault energy on deformation twinning in fcc metals. Metallurgical and Materials Transactions A, 1999. 30(5): p. 1223-1233.
11. Allain, S., et al., Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Materials Science and Engineering: A, 2004. 387: p. 158-162.
12. C. Donadille, R.V., P. Dervin, R. Penelle, Development of texture and microstructure during cold-rolling and annealing of FCC alloys: Example of an austenitic stainless steel. Acta metallurgica, 1989. 37(6): p. 1547-1571.
13. J. Hirsch, K.L., Overview no. 76: Mechanism of deformation and development of rolling textures in polycrystalline fcc metals—II. Simulation and interpretation of experiments on the basis of Taylor-type theories. Acta Metallurgica, 1988. 36(11): p. 2883-2904.
14. O. Engler, R.V., Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. 2009: CRC press.
15. T. Leffers, D.J.J., The early stages of the development of rolling texture in copper and brass. Texture, Stress, and Microstructure, 1987. 8: p. 467-480.
16. J. Hirsch, K.L., Overview no. 76: Mechanism of deformation and development of rolling textures in polycrystalline fcc metals—I. Description of rolling texture development in homogeneous CuZn alloys. Acta Metallurgica, 1988. 36(11): p. 2863-2882.
17. U. F. Kocks, C.N.T., H. R. Wenk, Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. 2000: Cambridge university press.
18. P. Wagner, O.E., K. Lücke, Formation of Cu-type shear bands and their influence on deformation and texture of rolled fcc {112}< 111> single crystals. Acta Metallurgica et Materialia, 1995. 43(10): p. 3799-3812.
19. H. Paul, A.M., J. H. Driver, E. Bouzy On twinning and shear banding in a Cu–8 at.% Al alloy plane strain compressed at 77 K. International Journal of Plasticity, 2009. 25(8): p. 1588-1608.
20. J. Hirsch, K.L., M. Hatherly, Overview no. 76: Mechanism of deformation and development of rolling textures in polycrystalline fcc metals-III. THE INFLUENCE OF SLIP INHOMOGENEITIES AND TWINNING. OVERVIEW NO 76. Acta metall, 1988. 36(11): p. 2905-2927.
21. Hirsch, J.R., Correlation of deformation texture and microstructure. Materials Science and Technology, 1990. 6(11): p. 1048-1057.
22. Jamaati, R., Unexpected Cube texture in cold rolling of copper. Materials Letters, 2017. 202: p. 111-115.
23. Engler, O., On the origin of the R orientation in the recrystallization textures of aluminum alloys. Metallurgical and Materials Transactions A, 1999. 30(6): p. 1517-1527.
24. Z. N. Mao, R.C.G., F. Liu, Y. Liu, X. Z. Liao, J. T. Wang, Effect of equal channel angular pressing on the thermal-annealing-induced microstructure and texture evolution of cold-rolled copper. Materials Science and Engineering: A, 2016. 674: p. 186-192.
25. Taylor, G.I., PLASTIC STRAIN IN METALS Journal of the Institute of Metals, 1938. 62: p. 18.
26. Houtte, P.V., On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystals. Materials Science and Engineering, 1982. 55(1): p. 69-77.
27. T. Mánik, B.H., Review of the Taylor ambiguity and the relationship between rate-independent and rate-dependent full-constraints Taylor models. International Journal of Plasticity, 2014. 55(Supplement C): p. 152-181.
28. 謝秉穎, 泰勒模型模擬 FCC 金屬中剪切帶之織構研究. 成功大學材料科學及工程學系學位論文, 2015: p. 1-172.
29. 陳皇均, 探討疊差能對冷軋黃銅, 鎳及銅織構與微結構之影響. 成功大學材料科學及工程學系學位論文, 2015: p. 1-127.
30. Houtte, P.V., A comprehensive mathematical formulation of an extended Taylor–Bishop–Hill model featuring relaxed constraints, the Renouard–Wintenberger theory and a strain rate sensitivity model. Texture, Stress, and Microstructure, 1988. 8: p. 313-350.
31. C. S. Lee, B.J.D., A simple theory for the development of inhomogeneous rolling textures. Metallurgical Transactions A, 1991. 22(11): p. 2637-2643.
32. Raabe, D., Computational Materials Science: The Simulation of Materials Microstructure and Properties. 1988.
33. Y.S. Liu, L.D., L. De Buyser, T.B. Wu, P. Van Houtte, Intensity correction in texture measurement of polycrystalline thin films by X-ray diffraction. Texture, Stress, and Microstructure, 2003. 35(3-4): p. 283-290.
34. 劉書宏, 陳智, and 謝嘉民, 銅電鍍與電解拋光於銅鑲嵌金屬連導線應用之研究. 2005.
35. 張智星, MATLAB 程式設計入門篇: 修訂第三版. 2015: 碁峰資訊.
36. Morawiec, A., Orientations and Rotations: Computations in Crystallographic Textures. 2013. 1.
37. Houtte, P.V. and E. Aernoudt, Solution of generalized taylor theory of plastic-flow. 3. applications. Zeitschrift fur metallkunde, 1975. 66(5): p. 303-306.
校內:2021-08-17公開